
ChiSA: Static Analysis for Lightweight Chisel Verification

JIACAI CUI, QINLIN CHEN, and ZHONGSHENG ZHAN, Nanjing University, China

TIAN TAN∗ and YUE LI∗, Nanjing University, China

The growing demand for productivity in hardware development opens up new opportunities for applying

programming language (PL) techniques to hardware description languages (HDLs). Chisel, a leading agile

HDL, embraces this shift by leveraging modern PL features to enhance hardware design productivity. However,

verification for Chisel remains a major productivity bottleneck, requiring substantial time and manual effort. To

address this issue, we advocate the use of static analysis—a technique proven well-suited to agile development

workflows in software—for lightweight Chisel verification.

This work establishes a theoretical foundation for Chisel static analysis. At its core is 𝜆𝐶 , a formal core

calculus of ChAIR (a Chisel-specific intermediate representation for analysis). 𝜆𝐶 is the first formalism that

captures the essence of Chisel while being deliberately minimal to ease rigorous reasoning about static analysis

built on 𝜆𝐶 . We prove key properties of 𝜆𝐶 that reflect real hardware characteristics, which in turn offer a

form of retrospective validation for its design. On the basis of 𝜆𝐶 , we define and formalize the hardware

value flow analysis (HVFA) problem, which underpins our static analyses for critical Chisel verification tasks,

including bug detection and security analysis. We then propose a synchronized fixed-point solution to the

HVFA problem, featuring hardware-specific treatment of the synchronous behavior of clock-driven hardware

registers—the essential feature of Chisel programs. We further prove key theorems establishing the guarantees

and limitations of our solution.

As a proof of concept, we develop ChiSA (30K+ LoC)—the first Chisel static analyzer that can analyze

intricate hardware value flows to enable lightweight analyses for critical Chisel verification tasks such as bug

detection and security analysis. To facilitate thorough evaluation of both ChiSA and future work, we provide

ChiSABench (11M+ LoC), a comprehensive benchmark for Chisel static analysis.

Our evaluation on ChiSABench demonstrates that ChiSA offers an effective and significantly more light-

weight approach for critical Chisel verification tasks, especially on large and complex real-world designs. For

example, ChiSA identified 69 violable developer-inserted assertions in large-scale Chisel designs (9.7M+ LoC)

in under 200 seconds—eight of which were recognized by developers and scheduled for future fixes—and

detected all 60 information-leak vulnerabilities in the well-known TrustHub benchmark (1.1M+ LoC) in just

one second—outperforming state-of-the-art Chisel approaches like ChiselTest’s bounded model checking and

ChiselFlow’s secure type system. These results underscore the high promise of static analysis for lightweight

Chisel verification. To encourage continued research and innovation, we will fully open-source ChiSA (30K+

LoC) and ChiSABench (11M+ LoC).

CCS Concepts: • Theory of computation→ Program analysis; • Hardware→ Hardware description
languages and compilation.

Additional Key Words and Phrases: Static Analysis, Hardware, Chisel

∗
Corresponding author.

Authors’ Contact Information: Jiacai Cui, jiacaicui@smail.nju.edu.cn; Qinlin Chen, qinlinchen@smail.nju.edu.cn; Zhong-

sheng Zhan, yahya_chan@smail.nju.edu.cn, State Key Laboratory for Novel Software Technology, Nanjing University,

China; Tian Tan, tiantan@nju.edu.cn; Yue Li, yueli@nju.edu.cn, State Key Laboratory for Novel Software Technology,

Nanjing University, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART18

https://doi.org/10.1145/3776660

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://orcid.org/0009-0001-4922-887X
https://orcid.org/0009-0006-5498-5927
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0009-3792-1237
https://orcid.org/0009-0009-1285-2298
https://orcid.org/0009-0001-4922-887X
https://orcid.org/0009-0006-5498-5927
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0009-3792-1237
https://orcid.org/0009-0009-1285-2298
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776660
https://www.acm.org/publications/policies/artifact-review-and-badging-current

18:2 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

ACM Reference Format:
Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2026. ChiSA: Static Analysis for Lightweight

Chisel Verification. Proc. ACM Program. Lang. 10, POPL, Article 18 (January 2026), 33 pages. https://doi.org/10.

1145/3776660

1 Introduction
Inherent inefficiencies in general-purpose processors are driving a shift toward domain-specific

architectures (DSAs), intensifying the need for more productive hardware development work-

flows [53, 54, 70]. This creates opportunities for programming language (PL) techniques to play

a critical role in hardware development [113]. To meet this demand, Chisel [17]—a leading agile

hardware description language (HDL)—leverages modern PL features to improve hardware design

productivity, and has seen successful adoption in both academia [22, 77, 119] and industry [8, 15].

While Chisel improves hardware design productivity, verification remains a major bottleneck,

typically requiring substantial time and manual effort. Hardware projects often spend over 70% of

development time on verification [51], employ more verification engineers than design engineers,

and even require designers to devote nearly half of their time to verification tasks [49].

Current approaches to Chisel verification largely inherit heavyweight methodologies from the

broader hardware community, which fall into three main categories, each with efficiency limitations:

(1) Simulation-based testing [19, 37, 41, 43, 44, 67, 68, 101] remains the predominant hardware

verification technique, but it is fundamentally constrained by the fact that simulation is slow—

orders of magnitude slower (10
3
–10

6×) than real-time hardware execution [45, 55, 78, 116].

(2) Formal verification techniques—including bounded model checking [42, 73, 117, 121], which

suffer from the well-known state explosion problem [30], and theorem-proving [46], which

require labor-intensive construction of formal proofs—are typically only applied to small-scale,

critical modules since they do not scale to million-line-scale designs, let alone support rapid

development cycles at that scale.

(3) Secure type systems [39, 40, 47] extend Chisel’s standard type system with security labels to

enforce security policies via type checking. However, their practical adoption is hindered by

the extensive manual annotation burden [91, 92], which grows proportionally with code size.

To address these limitations, we advocate for the use of (sophisticated) static analysis [112]—a

technique proven well-suited to agile development workflows [34], with established success in

software bug detection [120] and security analysis [29]—for lightweight Chisel verification.

Note that although Chisel currently relies on Verilog [1] as a backend to maintain compatibility

with commercial electronic design automation (EDA) toolchains, we intentionally base our work

natively on Chisel rather than on its generated, flattened, low-level Verilog. This choice preserves

high-level Chisel-specific information that is lost during standard translation to Verilog—such

as assertions expressing design intent, high-level memory abstractions amenable to specialized

treatment, and source locations essential for traceability. As further elaborated and discussed in

Section 6, retaining this information facilitates more effective static analysis that is better tailored

to Chisel. This Chisel-native approach also aligns with ongoing efforts in the Chisel community

to develop open-source EDA workflows that increasingly avoid reliance on Verilog, including

Chisel-native simulation [19, 68], waveform viewing [80], synthesis [24, 93, 114], and design space

exploration (DSE) [48].

In this work, we establish a theoretical foundation for Chisel static analysis. At its core is 𝜆𝐶 , a

formal core calculus of ChAIR (a Chisel-specific intermediate representation for analysis). 𝜆𝐶 is

the first formalism that captures the essence of Chisel while being deliberately minimal to ease

rigorous reasoning about static analysis built on 𝜆𝐶 . Below, we briefly introduce ChAIR and 𝜆𝐶 ,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3776660
https://doi.org/10.1145/3776660

ChiSA: Static Analysis for Lightweight Chisel Verification 18:3

then present the hardware value flow analysis (HVFA) problem defined atop 𝜆𝐶 , which forms the

foundation of our analyses for Chisel verification tasks like bug detection and security analysis.

ChAIR. To ground both our theory and practice, we introduce ChAIR, an intermediate represen-

tation (IR) for analysis that offers a simple yet expressive abstraction of Chisel hardware designs.

In contrast to Firrtl [63]—the official Chisel compiler IR—and its associated CIRCT [74] dialects,

which adopt recursive IR structures based on abstract syntax trees (ASTs) or MLIR [75] operations

and are primarily designed for transformation and lowering tasks, ChAIR employs a flat, linear

three-address code (3AC) structure that prioritizes simplicity to ease the development of static

analyses [97]. To further enable efficient sparse analysis, ChAIR adopts static single assignment

(SSA) form [122], which also closely aligns with the structural essence of digital circuits, as discussed

in Section 2.2. Due to space limits, the full specification of ChAIR, which captures comprehensive

Chisel language features, is provided in the supplementary material accompanying this paper.

𝜆𝐶 . To support rigorous reasoning about static analyses for Chisel, we formalize a core calculus

for ChAIR, denoted 𝜆𝐶 (Section 2). Unlike heavyweight formalisms developed for other HDLs such as

Verilog [25] and VHDL [60], which aim to comprehensively characterize full language specifications,

𝜆𝐶 is the first formalism that captures the essence of Chisel while being deliberately minimal—

making it well-suited for formal reasoning about static analysis [61, 71, 72, 94]. Since Chisel

specifically focuses on describing synchronous digital circuits [103], 𝜆𝐶 is tailored to minimally

capture the essence of such circuits. Among various aspects of Chisel that 𝜆𝐶 exposes, we highlight

the synchronous behavior of hardware registers—driven by clock ticks—as a key semantic distinction

from conventional software languages and a central concern for Chisel static analysis. Furthermore,

we prove key properties of 𝜆𝐶 that reflect physical realities of synchronous digital circuits, such as

the correspondence between combinational loops and circuit instability [33], which in turn offer a

form of retrospective validation for 𝜆𝐶 ’s design.

HVFA. On the basis of 𝜆𝐶 , we define and formalize the HVFA problem (Section 3). Owing to 𝜆𝐶 ’s

ability to capture the essence of Chisel, HVFA underpins our static analyses of critical Chisel verifi-

cation tasks—including bug detection and security analysis. HVFA draws inspiration from classical

data/value flow analysis in software [66], but incorporates hardware-specific customizations to

handle the synchronous semantics of clock-driven hardware registers (the essential feature of Chisel

programs) —a fundamental departure from conventional software behavior. In particular, we intro-

duce synchronous flow functions to approximate simultaneous register updates synchronized by

clock ticks, and define a synchronized fixed-point solution to statically over-approximate dynamic

synchronous circuit behavior. We formally characterize these hardware-specific customizations by

proving theorems that establish a theoretical foundation for HVFA’s guarantees and limitations.

The formal study of HVFA also illustrates how 𝜆𝐶 supports rigorous reasoning about Chisel static

analyses.

Proof of Concept. We developed ChiSA (30K+ LoC), the first Chisel static analyzer capable of

analyzing intricate hardware value flows to enable efficient yet sophisticated analyses for critical

Chisel verification tasks, such as bug detection and security analysis. Note that a significant portion

of ChiSA’s codebase is dedicated to constructing reusable infrastructure to support ongoing research

and the development of new Chisel static analyses. This infrastructure includes, but is not limited

to: (1) various HVFAs (a set of fundamental analyses for building value flows for hardware), (2)

ChAIR, along with a front-end that automatically translates Chisel code to ChAIR, (3) a rich set of

useful graph representations built on top of ChAIR, and (4) an analysis manager for orchestrating

multiple analyses and integrating new ones.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:4 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Evaluation. To support thorough evaluation for ChiSA, we provide ChiSABench (11M+ LoC),

a comprehensive Chisel static analysis benchmark suite spanning a broad range of language

features, design purposes, and code scales. To enhance ChiSABench’s out-of-the-box accessibility

and hands-on usability for future research, we invested considerable effort to pre-elaborate all

designs (hardware programs) in ChiSABench into standalone Firrtl [63] files, eliminating the need

for tedious environment setup or project-specific build steps, including managing multi-language

dependencies and resolving fragile toolchain version conflicts.

To investigate whether ChiSA provides an effective and more lightweight approach for critical

Chisel verification tasks—particularly for large and complex real-world Chisel designs—and to

assess its fundamental ability to analyze hardware value flows, we evaluate ChiSA’s representative

analyses on ChiSABench. The results are highly promising:

(1) Hardware Bug Detection (ChiSA vs. Bounded Model Checking). ChiSA’s static assertion analysis,

identified 69 violable embedded (developer-inserted) assertions—eight of which were recognized by

developers and scheduled for future fixes—across large-scale real-world Chisel designs (9.7M+ LoC)

in just 200 seconds, illustrating its effectiveness and lightweight nature. In contrast, the state-of-the-

art Chisel bounded model checking provided by ChiselTest [73] (referred to as ChiselTest-BMC)

failed to analyze any of these designs due to its limitations under real-world conditions. For

example, the most common failure occurred when encountering external hardware modules whose

definitions were inaccessible—a typical scenario in hardware development given the widespread use

of intellectual property (IP) cores. Unlike ChiselTest-BMC, which crashes in this scenario, ChiSA

handles such cases by supporting incomplete analysis via conservative approximation of external

components, underscoring the practical advantages of static analysis.

To further validate ChiSA’s lightweight nature, we additionally evaluated both tools on 877

small-scale, simpler Chisel designs (average 256 LoC), where statistics for ChiselTest-BMC could be

obtained. ChiSA completed the analysis of all these designs in just 3 seconds, a significant reduction

compared to the 2776 seconds required by ChiselTest-BMC.

(2) Hardware Security Analysis (ChiSA vs. Secure Type System). ChiSA’s taint analysis detected all

18 vulnerabilities in ChiselFlow’s [47] microbenchmark (655 LoC) using only 44 coarse-grained

source/sink annotations—a substantial reduction in annotation burden compared to the 228 fine-

grained type annotations needed by ChiselFlow, demonstrating more lightweight manual effort

while maintaining comparable effectiveness.

On the much larger TrustHub benchmark [102, 104] (1.15M LoC), ChiSA identified all 60

information-leak vulnerabilities using only 85 source/sink annotations guided by TrustHub’s

documentation. In contrast, ChiselFlow could not be applied to TrustHub due to the impracticality

of retrofitting a million-line-scale codebase with an annotation-intensive type systemwhose manual

effort grows proportionally with code size.

In summary, this work makes the following contributions:

• We present 𝜆𝐶 , the formal core calculus of our Chisel-specific intermediate representation for

analysis. 𝜆𝐶 is the first formalism that captures the essence of Chisel while being deliberately

minimal to ease rigorous reasoning about static analysis built atop it.

• Based on 𝜆𝐶 , we define and formalize the hardware value flow analysis (HVFA) problem, which

adapts classical data/value flow analysis from software to hardware by incorporating hardware-

specific treatment of synchronous semantics of clock-driven registers—the essential feature of

Chisel. We further prove key theorems establishing HVFA’s guarantees and limitations.

• As a proof of concept for HVFA, we developed ChiSA (30K+ LoC), the first Chisel static analyzer

capable of analyzing intricate hardware value flows to enable efficient yet sophisticated analyses

for critical Chisel verification tasks, such as bug detection and security analysis.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:5

• We provide ChiSABench (11M+ LoC), a comprehensive benchmark suite for evaluating Chisel

static analyses. Our evaluation demonstrates that ChiSA offers an effective and highly lightweight

solution for critical Chisel verification tasks, outperforming state-of-the-art Chisel techniques

(such as bounded model checking and secure type system) on large, complex, real-world designs.

• Wewill submit an artifact to reproduce all experimental results in the paper, and fully open-source

both ChiSA (30K+ LoC) and ChiSABench (11M+ LoC) to the community.

Although ChiSA is still in its early stages and under active development for additional client

analyses, we believe it demonstrates the potential of static analysis for lightweight hardware

verification. We hope this work contributes to future innovations in Chisel static analysis and

inspires broader applications of programming language techniques to hardware verification.

2 𝜆𝐶 : The Core Calculus of ChAIR
To support rigorous reasoning about static analyses for Chisel, we formalize a core calculus for

ChAIR, called 𝜆𝐶 . In contrast to prior formalisms for other hardware description languages (HDLs),

such as Verilog [25] and VHDL [60], which aim to comprehensively characterize full language

specifications and often become heavyweight, 𝜆𝐶 is the first formalism that captures the essence

of Chisel while being deliberately minimal. This makes it well-suited for formally defining and

reasoning about static analyses [61, 71, 72, 94], as we illustrate in Section 3.

Since Chisel specifically focuses on describing synchronous digital circuits [103]—with its idioms

and libraries assuming a single global clock domain by default—we accordingly concentrate our

discussion on synchronous circuits
1
. While 𝜆𝐶 targets a minimal core of Chisel to enable clear

and tractable formal reasoning, ChAIR itself supports comprehensive Chisel language features, as

detailed in our supplementary material.

To clarify the relationship among source-level Chisel, ChAIR, and 𝜆𝐶 : (1) Source-level Chisel

designs can be comprehensively compiled into ChAIR through ChiSA’s frontend, a process we

have thoroughly validated on ChiSABench (11M+ LoC). (2) ChAIR, in turn, can be fully desugared

into 𝜆𝐶 , with the only exceptional case being gated clocks [31], a rarely used case in Chisel—cross

all real-world projects in ChiSABench, we only observed gated clocks in roughly 1 out of every

1,000,000 lines. We deliberately exclude this rare case to keep 𝜆𝐶 as clean and minimal as we can

without compromising its practical adequacy as a theoretical core calculus for ChAIR.

In this section, we begin with an example to informally introduce 𝜆𝐶 and highlight the essence

of Chisel, while also providing necessary hardware background (Section 2.1). We then formalize

the structural essence of circuits—digital components and their interconnections—via the syntax of

𝜆𝐶 (Section 2.2). Next, we formalize the behavioral essence—namely, reactivity and synchronicity—

through the operational semantics of 𝜆𝐶 (Section 2.3). Finally, in Section 2.4, we establish key

circuit properties in 𝜆𝐶 that reflect real-world physical characteristics, such as the correspondence

between combinational loops and circuit instability [33], which in turn offer a form of retrospective

validation for its design.

2.1 𝜆𝐶 Informal: Understanding the Essence of Chisel Circuits
This section provides an informal introduction to 𝜆𝐶 using the accumulator example in Figure 1 to

highlight the essence of Chisel circuits it captures, focusing on both the static structure and the

dynamic behavior of these circuits. Relevant hardware background is included as needed within

the section.

From a static structural perspective, a circuit consists of digital components and the connections

between them. In 𝜆𝐶 , components are modeled using operators—𝑦 op 𝑧 for arithmetic (e.g., adders)

1
Unless otherwise noted, all circuits discussed in the formal sections (Section 2 and Section 3) are assumed to be synchronous.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:6 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

1

2

3

4

5

val out = RegInit(0)

val prev = RegNext(out)

when (en) {

out := out + in

}

(a) Chisel Code

1

2

3

4

5

6

𝑜𝑢𝑡 ⇐ 𝑡!
𝑡! = mux 𝑟𝑠𝑡, 𝑡", 𝑡#
𝑡" = 0
𝑡# = mux 𝑒𝑛, 𝑡$, 𝑜𝑢𝑡
𝑡$ = 𝑜𝑢𝑡 + 𝑖𝑛
𝑝𝑟𝑒𝑣 ⇐ 𝑜𝑢𝑡

(b) 𝜆𝐶 Representation

𝑡4+
mux

enin

𝑡3

mux
0

𝑡2

rst

𝑡1 out prev

(c) Schematic

𝜆𝐶 Reduction Rule External Stimulus Internal Connection in en rst out prev 𝑡1 𝑡2 𝑡3 𝑡4

C-Eval — 𝑡4 = out + in 0 0 0 0 0 0 0 0 0

C-Eval — 𝑡3 = mux(en, 𝑡4, 𝑜𝑢𝑡) 0 0 0 0 0 0 0 0 0

C-Eval — 𝑡2 = 0 0 0 0 0 0 0 0 0 0

C-Eval — 𝑡1 = mux(rst, 𝑡2, 𝑡3) 0 0 0 0 0 0 0 0 0

S-Poke poke en 1 — 0 1 0 0 0 0 0 0 0

C-Eval — 𝑡3 = mux(en, 𝑡4, 𝑜𝑢𝑡) 0 1 0 0 0 0 0 0 0

S-Poke poke in 2 — 2 1 0 0 0 0 0 0 0

C-Eval — 𝑡4 = out + in 2 1 0 0 0 0 0 0 2

C-Eval — 𝑡3 = mux(en, 𝑡4, 𝑜𝑢𝑡) 2 1 0 0 0 0 0 2 2

C-Eval — 𝑡1 = mux(rst, 𝑡2, 𝑡3) 2 1 0 0 0 2 0 2 2

S-Tick tick out ⇐ 𝑡1 ∥ prev ⇐ out 2 1 0 2 0 2 0 2 2

C-Eval — 𝑡4 = out + in 2 1 0 2 0 2 0 2 4

C-Eval — 𝑡3 = mux(en, 𝑡4, out) 2 1 0 2 0 2 0 4 4

C-Eval — 𝑡1 = mux(rst, 𝑡2, 𝑡3) 2 1 0 2 0 4 0 4 4

S-Tick tick out ⇐ 𝑡1 ∥ prev ⇐ out 2 1 0 4 2 4 0 4 4

C-Eval — 𝑡4 = out + in 2 1 0 4 2 4 0 4 6

C-Eval — 𝑡3 = mux(en, 𝑡4, out) 2 1 0 4 2 4 0 6 6

C-Eval — 𝑡1 = mux(rst, 𝑡2, 𝑡3) 2 1 0 4 2 6 0 6 6

(d) An execution trace of the accumulator, based on the reduction rules from Definition 2.14 and formally
described in Section 2.3. The external stimulus sequence is poke en 1; poke in 2; tick; tick, with the relevant
stimulus for each step shown in the “External Stimulus” column. The “Internal Connection” column indicates
the currently active internal connection during each step. The remaining columns display variable values after
each step; values changed in the current step are highlighted in red, while values touched by the reduced
connection but unchanged are shown in green.

Fig. 1. An informal introductory example of 𝜆𝐶 . The Chisel code, 𝜆𝐶 representation, and schematic describe
the same accumulator design, where out accumulates in when en is high, and resets to 0 when rst is high;
prev records the previous out. Unfocused Chisel boilerplate (e.g., module declaration, literal type conversion)
is omitted for clarity.

or logical (e.g., shifters) units and mux(𝑤,𝑦, 𝑧) for multiplexers—as well as constants (1 for voltage

high/power, 0 for voltage low/ground). Connections are expressed using assignment statements:

𝑥 = · · · for wire connections, and 𝑥 ⇐ · · · for register connections. For example:

• 𝑥 = 𝑦 + 𝑧 models an adder + 𝑥

𝑦

𝑧

that reactively updates 𝑥 with the sum of 𝑦 and 𝑧.

• 𝑥 = mux(𝑤,𝑦, 𝑧) models a multiplexer mux

𝑤

𝑦

𝑧
𝑥 that reactively sets 𝑥 to 𝑦 if𝑤 is nonzero,

or to 𝑧 otherwise.

• 𝑥 ⇐ 𝑦 models a register 𝑦 𝑥 that synchronously updates 𝑥 with the value of 𝑦 on each

global clock tick, in parallel with all other registers.

The correspondence between Figure 1b and Figure 1c illustrates how 𝜆𝐶 uses these simple, compos-

able primitives to describe a real functional hardware design. Comparing Figure 1a and Figure 1b,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:7

we see that high-level Chisel constructs can be desugared into 𝜆𝐶 to explicitly expose structural

details. For example, the RegInit method encapsulates reset logic; the when statement desugars to

a multiplexer.

From a dynamic behavior perspective, circuit execution manifests as voltage changes at each

circuit location in response to external stimuli. 𝜆𝐶 provides two primitives for external stimuli,

corresponding to the two types of external stimuli supported by Chisel’s official simulator [14]:

• poke 𝑥 𝑛 sets the value of input variable 𝑥 to 𝑛, modeling physical actions like toggling a switch.

• tick advances the global clock, triggering synchronous updates for all registers.

Figure 1d illustrates how the accumulator in Figure 1b behaves under the stimulus sequence

poke en 1; poke in 2; tick; tick, assuming all variables are zero by default, consistent with the

default behavior of Chisel’s simulator [14]. Initially, wire connections are active even before

any external stimulus is applied, reflecting the physical reality that combinational components

respond instantaneously when the circuit is powered up. Then, the execution trace highlights two

fundamental principles of circuit behavior:

(1) Reactivity: Wire connections (e.g., 𝑡4 = out + in) propagate changes reactively—any update to a

right-hand side (RHS) expression is immediately reflected in the left-hand side (LHS) variable.

(2) Synchronicity: Register connections (e.g., out ⇐ 𝑡1 ∥ prev ⇐ out) are updated synchronously

on each clock tick. Here, we use the symbol ∥ to combine register connections, indicating that

the combined register connections are updated in synchrony.

As illustrated in Figure 1c, each variable in 𝜆𝐶 corresponds to a distinct location in the circuit. Thus,

value changes of a variable represent voltage changes at a physical location in the design—capturing

the essence of circuit behavior from a programming language perspective.

2.2 𝜆𝐶 Syntax: Circuit (Static) Structure
The formal syntax of 𝜆𝐶 is intuitive in light of the introductory example in Section 2.1.

Definition 2.1 (𝜆𝐶 Syntax for Circuit Design). A 𝜆𝐶 circuit 𝐶 is defined as:

𝐶 ∈ Circuit := P(Item)
op ∈ Op := {(operators)}

𝑤, 𝑥,𝑦, 𝑧 ∈ Var := {(symbols)}
𝑛 ∈ Value = Z

𝜄 ∈ Item := 𝑥 = 𝑛

| 𝑥 = 𝑦 op 𝑧

| 𝑥 = mux(𝑤,𝑦, 𝑧)
| 𝑥 ⇐ 𝑦

As explained in Section 2.1, items 𝜄 capture the essential structure of circuits: components

and their connections. Expressions on the right-hand side of 𝑥 = · · · model circuit components.

Assignments of the form 𝑥 = · · · representing wire connections and 𝑥 ⇐ · · · representing register

connections. We have aimed to keep 𝜆𝐶 as minimal as possible; the current version reflects our

best-effort design.

We choose Value = Z (i.e., the set of mathematical integers) purely for ease of understanding

and presentation in this paper. This simplification does not impact the generality of our formal-

ization, discussion, or proof sketches. A more rigorous and detailed treatment is provided in the

supplementary material.

We now introduce several auxiliary notations. Throughout, we use “:=” to denote “is defined as”.

Definition 2.2 (Def & Use Selector). Def : Item → Var and Use : Item → P(Var) are defined as:

Def (𝑥 = 𝑛) := 𝑥 Def (𝑥 = 𝑦 op 𝑧) := 𝑥 Def (𝑥 = mux(𝑤,𝑦, 𝑧)) := 𝑥 Def (𝑥 ⇐ 𝑦) := 𝑥

Use(𝑥 = 𝑛) := ∅ Use(𝑥 = 𝑦 op 𝑧) := {𝑦, 𝑧} Use(𝑥 = mux(𝑤,𝑦, 𝑧)) := {𝑤,𝑦, 𝑧} Use(𝑥 ⇐ 𝑦) := {𝑦}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:8 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Definition 2.3 (Wire & Register Connection). For a circuit 𝐶 , 𝐶= := {_ = _ ∈ 𝐶} denotes its wire
connections and 𝐶⇐ := {_ ⇐ _ ∈ 𝐶} denotes its register connections, where _ is a wildcard.

Definition 2.4 (Input Variable). A variable 𝑥 is an input of a circuit 𝐶 if and only if it is used but

not defined in the circuit. Formally, 𝑥 ∈ Input𝐶 iff. ∃ 𝜄 ∈ 𝐶. 𝑥 ∈ Use(𝜄) ∧ ¬(∃ 𝜄 ∈ 𝐶. Def (𝜄) = 𝑥)
where Input𝐶 denotes the set of all input variables of circuit 𝐶 .

As introduced in Section 2.1, only input variables can be externally poked.

Definition 2.5 (𝜆𝐶 Syntax for External Stimuli). The external stimuli (a sequence of external

stimulus) 𝑆 of a circuit 𝐶 is defined as 𝑆 ∈ Stimulus𝐶 := (poke 𝑥 𝑛 | tick)∗ where 𝑥 ∈ Input𝐶 .

Since each physical location in a circuit should only be driven by at most one component—an

invariant also enforced in Chisel—𝜆𝐶 naturally adheres to the single static assignment (SSA) form.

Axiom 2.1 (Single Driver). 𝜆𝐶 is SSA: ∀𝐶 ∈ Circuit.∀𝜄1, 𝜄2 ∈ 𝐶.Def (𝜄1) = Def (𝜄2) ⇒ 𝜄1 = 𝜄2 .

𝑡4 = out + in

𝑡2 = 0 𝑡3 = mux(en, 𝑡4, out)

𝑡1 = mux(rst, 𝑡2, 𝑡3)

out ⇐ 𝑡1

prev ⇐ out

Fig. 2. Value flow graph of the intro-
ductory example in Figure 1.

To facilitate the development of static analysis algorithms,

we define a value flow graph (VFG) representation of the circuit

structure.

Definition 2.6 (Value Flow Graph for 𝜆𝐶 Hardware Design).

The value flow graph of a circuit 𝐶 is defined as 𝐺𝐶 = ⟨𝐶, 𝐸⟩ ,
where 𝐸 = {⟨𝜄1, 𝜄2⟩ ∈ 𝐶×𝐶 | Def (𝜄1) ∈ Use(𝜄2)} . We define the

predecessor and successor selectors as Pred(𝜄) := {𝜄′ | ⟨𝜄′, 𝜄⟩ ∈
𝐸} and Succ(𝜄) := {𝜄′ | ⟨𝜄, 𝜄′⟩ ∈ 𝐸} .

Figure 2 shows the VFG for the accumulator in Figure 1b,

which serves as an abstract static-analysis-friendly view of the

circuit schematic in Figure 1c. Register connections—whose

values update synchronously on each clock tick—are depicted

with double-line rectangles to distinguish them from reactive wire connections.

2.3 𝜆𝐶 Semantics: Circuit (Dynamic) Behavior
This section formalizes the operational behavior of circuits in 𝜆𝐶 , highlighting two core behavioral

features of hardware: reactivity and synchronicity.

We begin by defining the evaluation of expressions within an evaluation environment.

Definition 2.7 (Environment). An environment 𝐸 : Var → Value maps variables to values. The

domain of environments, representing the set of all possible environments, is denoted by Env.

Definition 2.8 (Expression). An expression 𝑒 is any right-hand side appearing in an item; that is:

𝑒 := 𝑛 | 𝑦 op 𝑧 | mux(𝑤,𝑦, 𝑧) | 𝑦

Definition 2.9 (Evaluation). ⟦𝑒⟧𝐸 , defined case by case as follows, denotes the value of expression
𝑒 evaluated in environment 𝐸:

⟦𝑛⟧𝐸 := 𝑛 ⟦𝑦 op 𝑧⟧𝐸 := 𝐸 (𝑦) op 𝐸 (𝑧) ⟦mux(𝑤,𝑦, 𝑧)⟧𝐸 :=

{
𝐸 (𝑦), if 𝐸 (𝑤) ≠ 0

𝐸 (𝑧), if 𝐸 (𝑤) = 0

⟦𝑦⟧𝐸 := 𝐸 (𝑦)

Items are the core elements of 𝜆𝐶 that govern a circuit’s dynamic behavior in response to changes

in the environment. Wire connections make the circuit reactive: whenever the value of the RHS

expression of a wire connection changes, the LHS variable is updated immediately. The following

activation function (Definition 2.10) specifies, for any change in the environment, which set of wire

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:9

connections should update their LHS values. Register connections make the circuit synchronous:

all left-hand sides of register connections are updated simultaneously at each clock tick. The

synchronization function (Definition 2.13) describes how the environment is updated on a clock

tick. These two utility functions are central to the operational semantics of 𝜆𝐶 .

Definition 2.10 (Activation Function). Given a circuit𝐶 , its activation functionA𝐶 : Env×Env →
P(𝐶=) is defined as

A𝐶 (𝐸, 𝐸′) := {𝜄 ∈ 𝐶= | ∃𝑥 ∈ Use(𝜄).𝐸′ (𝑥) ≠ 𝐸 (𝑥)}

It computes the set of wire connections activated by an environment change from 𝐸 to 𝐸′
.

Definition 2.11 (Atomic Effect). The effect of an item 𝜄 on the environment is a function ⟦𝜄⟧ :

Env → Env, defined as ⟦𝑥 (=|⇐)𝑒⟧(𝐸) := 𝐸 [𝑥 ↦→ ⟦𝑒⟧𝐸], where (=|⇐) denotes either = or⇐.

Definition 2.12 (Synchronous Effect). For a set of items 𝐼 = {𝜄1, . . . , 𝜄𝑛}, where each 𝜄𝑖 has the form
𝑥𝑖 (=|⇐)𝑒𝑖 , we define their synchronous effect ⟦𝐼⟧ : Env → Env as

⟦𝐼⟧(𝐸) := 𝐸 [𝑥1 ↦→ ⟦𝑒1⟧𝐸, . . . , 𝑥𝑛 ↦→ ⟦𝑒𝑛⟧𝐸],

In the following discussion, for convenience, we often write ⟦𝐼⟧ in decompositional form as

⟦𝜄1 ∥ . . . ∥ 𝜄𝑛⟧ to emphasize its synchronous nature.

Definition 2.13 (Synchronization Function). The synchronization function of a circuit 𝐶 is ⟦𝐶⇐⟧ :

Env → Env (an instance of Definition 2.12). It represents the effect that a clock tick has on the

environment.

We now define the full operational semantics of 𝜆𝐶 , orchestrating the above definitions into a

simple and unified circuit execution model.

Definition 2.14 (Operational Semantics of 𝜆𝐶). The semantics of a circuit𝐶 is given as a reduction

relation over configurations Config𝐶 := Stimulus𝐶 × Env × P(𝐶=).
A configuration ⟨𝑆, 𝐸, 𝐼 ⟩ ∈ Config𝐶 consists of: (1) 𝑆 , the remaining external stimulus sequence;

(2) 𝐸, the current environment; (3) 𝐼 , the set of pending internal wire connections to take effect.

We write𝐶 ⊢ ⟨𝑆, 𝐸, 𝐼 ⟩ ⇝ ⟨𝑆 ′, 𝐸′, 𝐼 ′⟩ to denote a one-step reduction. The reduction relation𝐶 ⊢⇝
is defined as follows, where 𝑐0 is the initial configuration under external stimulus 𝑆0.

S-Poke

𝐸′ = ⟦𝑥 = 𝑛⟧(𝐸)
𝐶 ⊢ ⟨poke 𝑥 𝑛;𝑆, 𝐸, ∅⟩ ⇝ ⟨𝑆, 𝐸′,A𝐶 (𝐸, 𝐸′)⟩

S-Tick

𝐸′ = ⟦𝐶⇐⟧(𝐸)
𝐶 ⊢ ⟨tick; 𝑆, 𝐸, ∅⟩ ⇝ ⟨𝑆, 𝐸′,A𝐶 (𝐸, 𝐸′)⟩

C-Eval

𝜄 ∈ 𝐼 𝐸′ = ⟦𝜄⟧(𝐸)
𝐶 ⊢ ⟨𝑆, 𝐸, 𝐼 ⟩ ⇝ ⟨𝑆, 𝐸′, (𝐼 − {𝜄}) ∪ A𝐶 (𝐸, 𝐸′)⟩

𝑐0 = ⟨𝑆0, 𝐸rand,𝐶=⟩, where 𝐸rand maps each

variable to a random value

Intuitively, each reduction step corresponds to either an external stimulus—such as pokes (S-Poke)

and clock ticks (S-Tick)—or an internal circuit update (C-Eval). The rules ensure the following:

register updates are synchronized with clock ticks (S-Tick); input changes are applied through

pokes (S-Poke); and wire-driven updates propagate reactively (C-Eval). Together, these rules define

the dynamic behavior of a synchronous hardware design under external stimuli. The execution

trace in Figure 1d corresponds to a sequence of such reduction steps beginning from an initial

configuration ⟨poke en 1; poke in 2; tick; tick, {_ ↦→ 0}, {𝑡2 = 0}⟩, with each row in the table

representing a single reduction step and listing the rule applied in the first column.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:10 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

The reader may notice that the reduction steps can be infinite, as the size of 𝐼 in the configu-

ration may never decrease. We will soon explain the physical meaning of this phenomenon and

demonstrate how it justifies the design of 𝜆𝐶 in Section 2.4.

We set the initial configuration 𝑐0 to ⟨𝑆0, 𝐸rand,𝐶=⟩. Here, 𝑆0 represents the initial sequence

of external stimuli in its entirety. The initial environment, 𝐸rand, assigns random values to all

variables, reflecting the physical reality that initial voltages at circuit locations are unpredictable.

Wire connections, denoted as𝐶=, are included in the initial configuration 𝑐0, capturing the fact that

combinational components respond instantaneously once the circuit is powered up.

2.4 𝜆𝐶 Properties: Circuit Characteristics
In this section, we formally establish several key properties of 𝜆𝐶 . These properties are chosen to

demonstrate that 𝜆𝐶 accurately models the characteristic behaviors of real hardware circuits. Our

aim is to justify the design of 𝜆𝐶 and to show that it can effectively support the study of Chisel

circuits using programming language techniques.

The theorems discussed in this section concern the reduction sequences of 𝜆𝐶 configurations. As

noted in Section 2.3, where we defined the reduction rules of 𝜆𝐶 , the reader may observe that the

reduction steps can be infinite, even when the initial configuration contains only a finite sequence

of external stimuli. This is because the size of 𝐼 in the configuration does not necessarily decrease

under all reduction rules. In particular, rule C-Eval removes 𝜄 from 𝐼 but simultaneously merges a

new set A𝑐 (𝐸, 𝐸′) into it. At first glance, this may seem like a flaw in the design of 𝜆𝐶 . However,

this behavior precisely models a specific phenomenon in circuits: oscillation, where the voltage

levels on wires continue to change indefinitely, even after external stimuli have ceased. Theorem 2.1

expresses this issue both in the language of 𝜆𝐶 and in its corresponding physical interpretation.

Theorem 2.1. A circuit could oscillate even if only a finite sequence of external stimuli is applied:

∃𝐶 ∈ Circuit.∃𝑐 ∈ Config𝐶 .∃an infinite reduction sequence from 𝑐.

Proof Sketch. We prove by constructing such a circuit: 𝑥 = 𝑦+1, 𝑦 = 𝑥 +1. This circuit exhibits

an infinite reduction sequence:

⟨poke 𝑥 1, {_ ↦→ 0}, ∅⟩ ⇝ ⟨𝜖, {𝑥 ↦→ 1, 𝑦 ↦→ 0}, {𝑦 = 𝑥 + 1}⟩ ⇝ ⟨𝜖, {𝑥 ↦→ 1, 𝑦 ↦→ 2}, {𝑥 = 𝑦 + 1}⟩
⇝ ⟨𝜖, {𝑥 ↦→ 3, 𝑦 ↦→ 2}, {𝑦 = 𝑥 + 1}⟩ ⇝ ⟨𝜖, {𝑥 ↦→ 3, 𝑦 ↦→ 4}, {𝑥 = 𝑦 + 1}⟩ ⇝ . . . □

Moreover, Intel’s design guidelines [33] explicitly recommend avoiding such oscillations when-

ever possible. This raises an important question: how can we formulate a condition on 𝜆𝐶 programs

that guarantees the absence of infinite reduction sequences? Theorem 2.2 shows that a circuit

whose value flow graph contains no cycles composed entirely of wire connections cannot have an

infinite reduction sequence. These cycles correspond exactly to the so-called “combinational loops”

in hardware engineering, which should be avoided according to best practices.

Definition 2.15 (Combinational Loop). A combinational loop in circuit 𝐶 is a cycle composed

entirely of wire connections in its value flow graph 𝐺𝐶 .

Theorem 2.2. A circuit without a combinational loop cannot oscillate:

If 𝐶 contains no combinational loop, then � infinite reduction sequence from any 𝑐 ∈ Config𝐶 .

Proof Sketch. Since 𝐶 has no combinational loop, the subgraph of𝐺𝐶 induced by 𝐶=—denoted

𝐺𝐶 [𝐶=]—is a directed acyclic graph (DAG). Let𝑚 = |𝐶=| and define a reverse topological ranking

𝑟 : 𝐶= → {1, . . . ,𝑚} such that 𝑟 (𝜄) = 𝑖 implies that 𝜄 is the 𝑖-th largest node in the topological

ordering of 𝐺𝐶 [𝐶=].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:11

Now define a potential function 𝜑 ∈ Config𝐶 → N𝑚+1
as 𝜑 (⟨𝑆, 𝐸, 𝐼 ⟩) = ⟨|𝑆 |, 𝑠1, . . . , 𝑠𝑚⟩, where

the 𝑠𝑖 ’s are the ranks of the elements of 𝐼 , sorted in descending order and padded with zeros to

length𝑚. The lexicographic order over N𝑚+1
is a well-order, and there exists no infinite strictly

decreasing sequence in a well-ordered set. Therefore, to prove the absence of infinite reduction

sequences, it suffices to show that 𝐶 ⊢ 𝑐 ⇝ 𝑐′ ⇒ 𝜑 (𝑐) > 𝜑 (𝑐′).
The S-Poke and S-Tick rules trivially decrease 𝜑 due to |𝑆 | decreasing. For the non-trivial case

C-Eval: suppose 𝐶 ⊢ ⟨𝑆, 𝐸, 𝐼 ⟩ ⇝ ⟨𝑆, 𝐸′, 𝐼 ′⟩ where 𝐸′ = ⟦𝜄⟧(𝐸) and 𝐼 ′ = (𝐼 − {𝜄}) ∪ A𝐶 (𝐸, 𝐸′). Since
A𝐶 (𝐸, 𝐸′) ⊆ Succ(𝜄) ∩𝐶= (by Definition 2.6 and Definition 2.10) and 𝜄′ ∈ Succ(𝜄) ⇒ 𝑟 (𝜄′) < 𝑟 (𝜄)
(by definition of 𝑟), all newly added elements in 𝐼 ′ are ranked strictly lower than 𝜄. Hence 𝜑 (𝑐′)
must be lexicographically smaller than 𝜑 (𝑐), completing the proof. □

To conclude the discussion, we present onemore theorem (Theorem 2.3), which can be interpreted

as stating that a circuit without combinational loops has a uniquely determined steady state for

a given sequence of external stimuli, aligning with our understanding of physical circuits. This

further justifies the design of 𝜆𝐶 and its semantics.

Theorem 2.3. The steady-state reached by a circuit without combinational loops is uniquely

determined:

𝐶 has no combinational loop∧𝐶 ⊢ ⟨𝑆, 𝐸,𝐶=⟩ ⇝∗ ⟨𝜖, 𝐸1, ∅⟩∧𝐶 ⊢ ⟨𝑆, 𝐸,𝐶=⟩ ⇝∗ ⟨𝜖, 𝐸2, ∅⟩ ⇒ 𝐸1 = 𝐸2 .

Proof Sketch. In the light of Theorem 2.2 and Newman’s Lemma [86], it is sufficient to prove

the following proposition: if 𝐶 ⊢ ⟨𝑆, 𝐸,𝐶=⟩ ⇝∗ ⟨𝑆𝑚, 𝐸𝑚, 𝐼𝑚⟩ ∧ 𝐶 ⊢ ⟨𝑆𝑚, 𝐸𝑚, 𝐼𝑚⟩ ⇝ ⟨𝑆1, 𝐸1, 𝐼1⟩ ∧
𝐶 ⊢ ⟨𝑆𝑚, 𝐸𝑚, 𝐼𝑚⟩ ⇝ ⟨𝑆2, 𝐸2, 𝐼2⟩, there is a configuration ⟨𝑆 ′, 𝐸′, 𝐼 ′⟩ such that 𝐶 ⊢ ⟨𝑆1, 𝐸1, 𝐼1⟩ ⇝∗

⟨𝑆 ′, 𝐸′, 𝐼 ′⟩ ∧𝐶 ⊢ ⟨𝑆2, 𝐸2, 𝐼2⟩ ⇝∗ ⟨𝑆 ′, 𝐸′, 𝐼 ′⟩.
To prove this, it is necessary to analyze the reduction rules. Among all reduction rules, only

C-Eval introduces nondeterminism in subsequent reductions, as it allows pending wire connections

to be consumed in an arbitrary order. Therefore, to prove that the final environment reduced from a

given configuration is uniquely determined, it suffices to show that the nondeterministic evaluation

order of C-Eval does not affect the determinism of its resulting environment. Although the result

appears intuitive, its rigorous proof is nontrivial and is thus provided in the supplementary material

due to space limitations. □

3 HVFA: Hardware Value Flow Analysis
To demonstrate how 𝜆𝐶 facilitates rigorous reasoning about Chisel static analyses, we define and

formally study the hardware value flow analysis (HVFA) problem based on 𝜆𝐶 . Leveraging 𝜆𝐶 ’s

ability to capture the essence of Chisel, HVFA enables our lightweight analyses for critical Chisel

verification tasks, as illustrated in our evaluation (Section 5).

HVFA draws inspiration from classical data/value flow analysis [66] in the software domain,

but incorporates hardware-specific customizations: (1) we introduce synchronous flow functions

(Definition 3.6) to approximate the synchronous behavior of clock-driven hardware registers; and

(2) we present the synchronized fixed-point solution (Definition 3.11) to derive sound value flow

information (e.g., constants, intervals, taints) at each circuit location (i.e., each variable in the

hardware design).

This section first formulates the HVFA problem in Section 3.1. Section 3.2 explains how synchro-

nous flow functions are used to approximate the behavior of clock-driven hardware registers, a

key hardware-specific distinction from classic data/value flow analysis for software. In Section 3.3,

we define the synchronized fixed-point solution and present an intuitive algorithm for computing

it. Section 3.4 proves theorems about the conditions that guarantee the soundness and factors

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:12 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

that affect precision. Finally, Section 3.5 introduces representative application-specific instances of

HVFA that support our hardware bug detection and security analysis for Chisel designs.

3.1 HVFA Problem Formulation
We formalize the HVFA problem by specifying its input, the form of its output, and the correctness

property the output must satisfy.

Input. The input to an HVFA problem includes a circuit 𝐶 ∈ Circuit, a lattice ⟨𝐿, ⊑⟩ encoding
application-specific knowledge (e.g., constants, intervals, taints), and a description 𝛿 : Input𝐶 → 𝐿

about the external stimulus—hereafter referred to as stimulus description.

Output. The output of an HVFA is a store 𝜎 ∈ Store := Var → 𝐿, which assigns to each

variable—representing a circuit location as illustrated in Figure 1c—a value from the input lattice.

Correctness. The output store 𝜎 is deemed correct if it soundly over-approximates all possible

runtime configurations that may arise from any execution of the circuit under external stimuli

consistent with the input description 𝛿 , as formalized in Definition 3.4.

Definition 3.1 (Abstraction Function). We use an abstraction function 𝛼 : Value → 𝐿 to represent

the relationship between static abstractions and dynamic values. For brevity without harming

clarity, we simply overload 𝛼 by defining 𝛼 : Env → Store as 𝛼 (𝐸) := {𝑥 ↦→ 𝛼 (𝑛) | 𝐸 (𝑥) = 𝑛} and
𝛼 : Config → Store as 𝛼 (⟨_, 𝐸, _⟩) := 𝛼 (𝐸).

Definition 3.2 (Stimulus-Description Consistency). A stimulus 𝑆 ∈ Stimulus𝐶 is consistent with a

description 𝛿 : Input𝐶 → 𝐿 if ∀poke 𝑥 𝑛 ∈ 𝑆.𝛼 (𝑛) ⊑ 𝛿 (𝑥).

Definition 3.3 (Store Precision Ordering). For 𝜎1, 𝜎2 ∈ Store, we say 𝜎1 is more precise than 𝜎2,

denoted as 𝜎1 ⊑ 𝜎2, if ∀𝑥 .𝜎1 (𝑥) ⊑ 𝜎2 (𝑥) .

Definition 3.4 (Soundness). A store 𝜎 is sound if for any dynamic execution trace 𝐶 ⊢ 𝑐0 ⇝
𝑐1 . . . starting from 𝑐0 (Definition 2.14) where 𝑆0 is consistent with the stimulus description 𝛿

(Definition 3.2), we have ∀𝑖 ≥ 0.𝛼 (𝑐𝑖) ⊑ 𝜎 .

Discussion About Stimulus Description. While the soundness property of a concrete HVFA result

is defined over external stimuli consistent with the input stimulus description 𝛿 , the general HVFA

formulation itself is not stimulus-specific. For instance, one can define a trivial stimulus description

𝛿 = {_ ↦→ ⊤}, which is naturally consistent with all possible external stimuli, since the corresponding

consistency condition ∀poke 𝑥 𝑛 ∈ 𝑆.𝛼 (𝑛) ⊑ ⊤ (Definition 3.2) is trivially satisfied. In this case,

the soundness property would quantify over all possible external stimuli without imposing any

additional constraints from the stimulus description 𝛿 .

The purpose of including the stimulus description 𝛿 is to allow flexibility in encoding known

constraints on external stimuli to improve precision. For example, if we know in advance that for a

specific 𝑥 , ∀poke 𝑥 𝑛 ∈ 𝑆.𝛼 (𝑛) ⊑ 𝑙 , where 𝑙 ∈ 𝐿 is non-trivial (i.e., 𝑙 ⊏ ⊤), we can specify 𝛿 (𝑥) = 𝑙

instead of the trivial 𝛿 (𝑥) = ⊤. This enables the analysis to incorporate non-trivial prior knowledge,
thus enhancing precision.

3.2 Approximate Synchronous Register Behavior: Synchronous Flow Functions
Inspired by classical data/value flow analysis, we use flow functions 𝑓 ⟦_⟧ : Store → Store
to approximate the dynamic circuit behavior ⟦_⟧ : Env → Env formalized in Section 2.3. In

particular, we define atomic flow functions 𝑓 ⟦𝜄⟧ (Definition 3.5) to approximate atomic effects

⟦𝜄⟧ (Definition 2.11), and synchronous flow functions 𝑓 ⟦𝜄1 ∥ 𝜄2⟧ (Definition 3.6) to approximate

synchronous effects ⟦𝜄1 ∥ 𝜄2⟧ (Definition 2.12). This section primarily focuses on synchronous flow

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:13

functions—a hardware-specific customization used in Section 3.3 to approximate the dynamic

behavior of clock-driven hardware registers.

3.2.1 Atomic Flow Functions.

Definition 3.5 (Atomic Flow Function). The atomic flow function of a single item 𝜄 is denoted

𝑓 ⟦𝜄⟧ : Store → Store and defined as 𝑓 ⟦𝑥 (=|⇐)𝑒⟧(𝜎) := 𝜎 [𝑥 ↦→ ⟦𝑒⟧𝜎], where ⟦𝑒⟧𝜎 ∈ 𝐿 represents

the lattice value of expression 𝑒 evaluated under store 𝜎 .

Here, the evaluation strategy ⟦𝑒⟧𝜎 in each HVFA instance is problem-specific and defined by its

developer, as we will see in Example 3.1, Example 3.2, and Section 3.5.

3.2.2 Synchronous Flow Functions.

Definition 3.6 (Synchronous Flow Function). Let 𝐼 = {𝜄1, . . . , 𝜄𝑛} where each item 𝜄𝑖 has the form

𝑥𝑖 (=|⇐)𝑒𝑖 , their synchronous flow function 𝑓 ⟦𝐼⟧(𝜎) : Store → Store is defined as

𝑓 ⟦𝐼⟧(𝜎) := 𝜎 [𝑥1 ↦→ ⟦𝑒1⟧𝜎 , . . . , 𝑥𝑛 ↦→ ⟦𝑒𝑛⟧𝜎] .
In the following discussion, for convenience, we often write 𝑓 ⟦𝐼⟧ in decompositional form as

𝑓 ⟦𝜄1 ∥ . . . ∥ 𝜄𝑛⟧ to emphasize its synchronous nature.

Below we establish that monotonicity, soundness, and precision ordering are preserved under

synchronous composition (Lemmas 3.1, 3.2, and 3.3). Thus, to verify these properties for a syn-

chronous flow function 𝑓 ⟦𝜄1 ∥ . . . ∥ 𝜄𝑛⟧, it suffices to verify them for each atomic flow function

𝑓 ⟦𝜄1⟧, . . . , 𝑓 ⟦𝜄𝑛⟧ individually.

Definition 3.7 (Flow Monotonicity). A flow function 𝑓 : Store → Store is monotonic if ∀𝜎1 ⊑
𝜎2.𝑓 (𝜎1) ⊑ 𝑓 (𝜎2) .

Lemma 3.1 (Monotonicity Preservation). If 𝑓 ⟦𝜄1⟧ and 𝑓 ⟦𝜄2⟧ are monotonic, then so is 𝑓 ⟦𝜄1 ∥ 𝜄2⟧.
Proof Sketch. Let 𝜄1 be 𝑥1 (=|⇐)𝑒1, 𝜄2 be 𝑥2 (=|⇐)𝑒2. Suppose 𝜎1 ⊑ 𝜎2. Monotonicity of 𝑓 ⟦𝜄1⟧

implies ⟦𝑒1⟧𝜎1 ⊑ ⟦𝑒1⟧𝜎2 . Similarly, ⟦𝑒2⟧𝜎1 ⊑ ⟦𝑒2⟧𝜎2 . Thus 𝑓 ⟦𝜄1 ∥ 𝜄2⟧(𝜎1) = 𝜎1 [𝑥1 ↦→ ⟦𝑒1⟧𝜎1 , 𝑥2 ↦→
⟦𝑒2⟧𝜎1] ⊑ 𝜎2 [𝑥1 ↦→ ⟦𝑒1⟧𝜎2 , 𝑥2 ↦→ ⟦𝑒2⟧𝜎2] = 𝑓 ⟦𝜄1 ∥ 𝜄2⟧(𝜎2). □

Definition 3.8 (Flow Soundness). An atomic flow function 𝑓 ⟦𝜄⟧ is sound if𝛼 (𝐸) ⊑ 𝜎 ⇒ 𝛼 (⟦𝜄⟧(𝐸)) ⊑
𝑓 ⟦𝜄⟧(𝜎); a synchronous flow function 𝑓 ⟦𝐼⟧ is sound if 𝛼 (𝐸) ⊑ 𝜎 ⇒ 𝛼 (⟦𝐼⟧(𝐸)) ⊑ 𝑓 ⟦𝐼⟧(𝜎).
Definition 3.8 formalizes the notion that a flow function 𝑓 ⟦_⟧ statically over-approximates the

dynamic behavior ⟦_⟧. Intuitively, if 𝑓 ⟦𝜄⟧ is sound, then whenever the store 𝜎 over-approximates

an environment 𝐸, that is, 𝛼 (𝐸) ⊑ 𝜎 , the static output 𝑓 ⟦𝜄⟧(𝜎) must still over-approximate the

dynamic result ⟦𝜄⟧(𝐸), that is, 𝛼 (⟦𝜄⟧(𝐸)) ⊑ 𝑓 ⟦𝜄⟧(𝜎).
Lemma 3.2 (Soundness Preservation). If 𝑓 ⟦𝜄1⟧ and 𝑓 ⟦𝜄2⟧ are sound, then so is 𝑓 ⟦𝜄1 ∥ 𝜄2⟧.
Proof Sketch. Let 𝜄1 be 𝑥1 (=|⇐)𝑒1, 𝜄2 be 𝑥2 (=|⇐)𝑒2. Suppose 𝛼 (𝐸) ⊑ 𝜎 . Soundness of 𝜄1

implies 𝛼 (⟦𝑒1⟧𝐸) ⊑ ⟦𝑒1⟧𝜎 . Similarly, 𝛼 (⟦𝑒2⟧𝐸) ⊑ ⟦𝑒2⟧𝜎 . Hence, 𝛼 (⟦𝜄1 ∥ 𝜄2⟧(𝐸)) = 𝛼 (𝐸) [𝑥1 ↦→
𝛼 (⟦𝑒1⟧𝐸), 𝑥2 ↦→ 𝛼 (⟦𝑒2⟧𝐸)] ⊑ 𝜎 [𝑥1 ↦→ ⟦𝑒1⟧𝜎 , 𝑥2 ↦→ ⟦𝑒2⟧𝜎] = 𝑓 ⟦𝜄1 ∥ 𝜄2⟧(𝜎). □

To facilitate unified reasoning about different suites of atomic and synchronous flow functions,

we introduce the notion of a flow function family.

Definition 3.9 (Flow Function Family). We write 𝑓𝜁 to denote the family of flow functions 𝑓𝜁 ⟦_⟧
(either atomic or synchronous) derived from a common flow evaluation strategy ⟦_⟧𝜁 . We say that

a flow function family 𝑓𝜁 has a property (e.g., monotonicity, soundness, precision ordering) if all its

members share that property. For simplicity, we omit the strategy subscript and superscript 𝜁 in

general discussions.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:14 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Example 3.1 (A Template Path-Insensitive Flow Function Family). A template path-insensitive flow

function family 𝑓𝜋 typically follows this evaluation strategy, where path condition𝑤 of mux(𝑤,𝑦, 𝑧)
is ignored:

⟦𝑛⟧𝜋𝜎 = 𝛼𝜋 (𝑛) ⟦𝑦 op 𝑧⟧𝜋𝜎 = 𝜎 (𝑦) op𝜋 𝜎 (𝑧) ⟦mux(𝑤,𝑦, 𝑧)⟧𝜋𝜎 = 𝜎 (𝑦) ⊔𝜋 𝜎 (𝑧) ⟦𝑦⟧𝜋𝜎 = 𝜎 (𝑦)

Here 𝛼𝜋 , op𝜋 ,⊔𝜋 are customizable for different application purposes. This example defines a

standard path-insensitive over-approximation for hardware multiplexers (i.e. mux(𝑤,𝑦, 𝑧)).

Definition 3.10 (Flow Precision Ordering). An atomic flow function 𝑓1⟦𝜄⟧ is more precise than

𝑓2⟦𝜄⟧, written as 𝑓1⟦𝜄⟧ ⊑ 𝑓2⟦𝜄⟧, if ∀𝜎.𝑓1⟦𝜄⟧(𝜎) ⊑ 𝑓2⟦𝜄⟧(𝜎). Likewise, for synchronous flow function

𝑓1⟦𝐼⟧ ⊑ 𝑓2⟦𝐼⟧ if ∀𝜎.𝑓1⟦𝐼⟧(𝜎) ⊑ 𝑓2⟦𝐼⟧(𝜎).

Definition 3.10 formalizes the precision ordering between flow functions: one function is more

precise if it yields more informative (i.e., smaller) over-approximations than the other.

Lemma 3.3 (Precision Ordering Preservation). If 𝑓1⟦𝜄⟧ ⊑ 𝑓2⟦𝜄⟧ and 𝑓1⟦𝜄′⟧ ⊑ 𝑓2⟦𝜄′⟧, then
𝑓1⟦𝜄 ∥ 𝜄′⟧ ⊑ 𝑓2⟦𝜄 ∥ 𝜄′⟧.

Proof Sketch. Let 𝜄 = 𝑥 (=|⇐)𝑒 , 𝜄′ = 𝑥 ′ (=|⇐)𝑒′. For any 𝜎 , from 𝑓1⟦𝜄⟧ ⊑ 𝑓2⟦𝜄⟧ we get ⟦𝑒⟧1𝜎 ⊑
⟦𝑒⟧2𝜎 . Similarly, ⟦𝑒′⟧1𝜎 ⊑ ⟦𝑒′⟧2𝜎 . Thus, 𝑓1⟦𝜄 ∥ 𝜄′⟧(𝜎) = 𝜎 [𝑥 ↦→ ⟦𝑒⟧1𝜎 , 𝑥 ′ ↦→ ⟦𝑒′⟧1𝜎] ⊑ 𝜎 [𝑥 ↦→
⟦𝑒⟧2𝜎 , 𝑥 ′ ↦→ ⟦𝑒′⟧2𝜎] = 𝑓2⟦𝜄 ∥ 𝜄′⟧(𝜎). □

The following example illustrates how the above definitions work together in practice.

Example 3.2 (Zero Analysis Flow Function Family). Zero analysis tracks whether a circuit location

holds the value zero, which can be used to detect simple divide-by-zero bugs. It is defined as follows:

⟨𝐿𝑍 , ⊑𝑍 ⟩ = 𝑍 𝑁

⊤

⊥

𝛿𝑍 (𝑥) = ⊤ 𝛼𝑍 (𝑛) =
{
𝑍, if 𝑛 = 0

𝑁, if 𝑛 ≠ 0

⟦𝑦 op 𝑧⟧𝑍𝜎 = ⊤
(Other cases inherit from Example 3.1)

Here, we conservatively approximate all binary operations as ⊤ for simplicity. This flow function

family remains atomically monotonic and sound by definition, and Lemmas 3.1 and 3.2 guarantee

that synchronous compositions inherit these properties. More precise flow function families are

also possible, and their relative precision can be easily compared with the help of Lemma 3.3.

3.3 Synchronized Fixed-Point Solution for HVFA
In ChiSA, executing an HVFA amounts to computing the least synchronized fixed-point solution

(Definition 3.12). Its properties will be discussed in Section 3.4. This section focuses on its calculation.

Definition 3.11 (Synchronized Fixed-Point Solution). Given a circuit 𝐶 , a lattice ⟨𝐿, ⊑⟩, a stimulus

description 𝛿 and a flow function family 𝑓 , the synchronized fixed-point (SFP) solution is

SFP𝐶,𝛿
𝑓

:= {𝜎 ∈ Store | (∀𝑥 ∈ Input𝐶 .𝜎 (𝑥) = 𝛿 (𝑥)) ∧ (∀𝜄 ∈ 𝐶=.𝑓 ⟦𝜄⟧(𝜎) = 𝜎) ∧ 𝑓 ⟦𝐶⇐⟧(𝜎) = (𝜎)}.

Here, 𝑓 ⟦𝐶⇐⟧—an instance of Definition 3.6—over-approximates ⟦𝐶⇐⟧ (Definition 2.13) used in

the S-Tick rule of the 𝜆𝐶 semantics, which defines the synchronous register updates triggered by

clock ticks (Definition 2.14). The soundness of this approximation will be established in Theorem 3.5.

Definition 3.12 (Least SFP Solution). LSFP𝐶,𝛿
𝑓

:= {𝜎 ∈ SFP𝐶,𝛿
𝑓

| ∀𝜎 ′ ∈ SFP𝐶,𝛿
𝑓

.𝜎 ⊑ 𝜎 ′}.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:15

Algorithm 1 Synchronized-Worklist Algorithm

Input: an HVFA problem 𝐶, ⟨𝐿, ⊑⟩, 𝛿 and a flow

function family 𝑓

Output: 𝜎 ∈ LSFP𝐶,𝛿

𝑓

1: WL= =𝐶=,WL⇐ =𝐶⇐, 𝜎 = 𝛿 ⊔ {_ ↦→ ⊥}
2: whileWL= ≠ ∅ orWL⇐ ≠ ∅ do
3: if WL= ≠ ∅ then
4: Remove 𝜄 fromWL=.

5: 𝜎 = 𝑓 ⟦𝜄⟧(𝜎) ⊲ see Definition 3.5

6: else
7: 𝜎 = 𝑓 ⟦WL⇐⟧(𝜎) ⊲ see Definition 3.6

8: WL⇐ = ∅
9: Add affected wire connections toWL=.

10: Add affected register connections toWL⇐.

Algorithm 1 presents an intuitive procedure for com-

puting LSFP𝐶,𝛿
𝑓

. It maintains two worklists: WL= for

reactive wire connections andWL⇐ for synchronous

register connections, reflecting their different hardware

semantics discussed in Section 2.3. Initially, all con-

nections are added to their respective worklists, and

the store 𝜎 is initialized to ⊥ for each variable, with

overrides from the stimulus description 𝛿 (Line 1). The

algorithm repeatedly applies flow functions to items

in the worklists, updating 𝜎 as necessary (Line 2-8).

Each change to 𝜎 (𝑥𝑖) affects all items in Succ(𝜄𝑖) (Def-
inition 2.6) where Def (𝜄𝑖) = 𝑥𝑖 , which are added to the

appropriate worklist for further processing (Line 9-10).

Theorem 3.4 gives the convergence condition for Algorithm 1.

Theorem 3.4 (Convergence). Algorithm 1 converges to the least synchronized fixed point LSFP𝐶,𝛿
𝑓

if 𝑓 is monotonic and ⟨𝐿, ⊑⟩ is a complete lattice with finite height.

Proof Sketch. We construct a function which simulates Algorithm 1, and then prove its least

fixed point is equal to any element in LSFP𝐶,𝛿
𝑓

by fixed-point theorems [69, 81, 111]. A detailed

proof is provided in the supplementary material due to space constraints. □

The time complexity of Algorithm 1 depends on the implementation of lattice operations, flow

functions, and worklist management. Assuming these operations all take constant time, we can

roughly estimate the complexity based on the number of single-point updates to the store 𝜎 . Since

each variable in𝐶 ∈ Circuit can be updated at most ℎ times—the height of the lattice 𝐿—the overall

convergence time is bounded by 𝑂 (|𝐶 | · ℎ). Section 5 provides detailed runtime statistics from our

implementation in ChiSA, which incorporates careful optimization efforts. We omit discussion of

these efforts in this paper as they fall outside the scope of our core contributions.

3.4 Soundness and Precision Discussion of HVFA
This section establishes key properties of the SFP𝐶,𝛿

𝑓
and LSFP𝐶,𝛿

𝑓
solution from Section 3.3, focusing

on conditions that guarantee soundness and factors that influence precision.

3.4.1 Soundness Guarantee Conditions. The soundness of the synchronized fixed-point solution

SFP𝐶,𝛿
𝑓

to HVFA (Definition 3.4) is ensuredwhen the flow function family 𝑓 is itself sound, and the ini-

tial store derived from the stimulus description 𝛿 (Line 1 or Algorithm 1) soundly over-approximates

the circuit’s initial configuration. This guarantee is formally established in Theorem 3.5.

Theorem 3.5 (Soundness). 𝜎 ∈ SFP𝐶,𝛿
𝑓

is sound (Definition 3.4) if 𝑓 is sound (Definition 3.8) and

initial store defined by external description 𝛿 over-approximates initial configuration 𝑐0 (i.e. 𝛼 (𝑐0) ⊑ 𝜎0
where 𝜎0 = 𝛿 ⊔ {_ ↦→ ⊥}).

Proof Sketch. We prove that ∀𝑐𝑖 .𝛼 (𝑐𝑖) ⊑ 𝜎 by induction on the trace 𝐶 ⊢ 𝑐0 ⇝ 𝑐1 ⇝ . . .

Base Case: By assumption, 𝛼 (𝑐0) ⊑ 𝜎0, and since 𝜎0 ⊑ 𝜎 (Definition 3.11), 𝛼 (𝑐0) ⊑ 𝜎 .

Inductive Step: Let 𝑐𝑖 = ⟨_, 𝐸𝑖 , _⟩ and 𝑐𝑖+1 = ⟨_, 𝐸𝑖+1, _⟩, and assume 𝛼 (𝑐𝑖) ⊑ 𝜎 , i.e., 𝛼 (𝐸𝑖) ⊑ 𝜎 . We

prove 𝛼 (𝑐𝑖+1) ⊑ 𝜎 , i.e., 𝛼 (𝐸𝑖+1) ⊑ 𝜎 , by case analysis on the applied reduction rule:

(1) Case C-Eval: 𝐸𝑖+1 = ⟦𝜄⟧(𝐸𝑖). By the soundness of 𝑓 (Definition 3.8):𝛼 (𝐸𝑖) ⊑ 𝜎 ⇒ 𝛼 (⟦𝜄⟧(𝐸𝑖)) ⊑
𝑓 ⟦𝜄⟧(𝜎). Since 𝜎 is a synchronized fixed point (Definition 3.11), 𝑓 ⟦𝜄⟧(𝜎) = 𝜎 , thus 𝛼 (𝐸𝑖+1) ⊑ 𝜎 .

(2) Case S-Tick: 𝐸𝑖+1 = ⟦𝐶⇐⟧(𝐸𝑖). Similarly, 𝛼 (𝐸𝑖) ⊑ 𝜎 ⇒ 𝛼 (𝐸𝑖+1) ⊑ 𝑓 ⟦𝐶⇐⟧(𝜎) = 𝜎 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:16 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

(3)Case S-Poke: 𝐸𝑖+1 = ⟦𝑥 = 𝑛⟧(𝐸𝑖) = 𝐸𝑖 [𝑥 ↦→ 𝑛]. By Definition 3.4, we have 𝛼 (𝑛) ⊑ 𝛿 (𝑥) = 𝜎 (𝑥),
thus 𝛼 (𝐸𝑖+1) ⊑ 𝜎 . □

The proof of Theorem 3.5 clarifies how the synchronized fixed-point solution soundly over-

approximates the dynamic circuit behavior defined by 𝜆𝐶 . Owing to the deliberately minimal design

of 𝜆𝐶 , which comprises only three reduction rules (Definition 2.14), the proof requires considering

just three corresponding cases.

3.4.2 Precision Affecting Factors. As shown in Algorithm 1, the fixpoint computation itself in-

troduces no additional imprecision beyond that already inherent in the flow function family 𝑓 .

Consequently, the precision of the computed solution LSFP𝐶,𝛿
𝑓

is entirely determined by the preci-

sion of 𝑓 . For a fixed circuit𝐶 and stimulus description 𝛿 , a more precise flow function family yields

a more precise solution, as formally established in Theorem 3.6. This implies that the precision of a

hardware value flow analysis can be systematically improved by refining the flow functions, as

demonstrated in Example 3.3.

Definition 3.13 (Precision Ordering of Flow Function Families). For two flow function families 𝑓1
and 𝑓2, we write 𝑓1 ⊑ 𝑓2 if ∀𝜄. 𝑓1⟦𝜄⟧ ⊑ 𝑓2⟦𝜄⟧.

Theorem 3.6 (Precision Ordering). If ⟨𝐿, ⊑⟩ is a complete lattice, 𝑓1 ⊑ 𝑓2, 𝜎1 ∈ LSFP𝐶,𝛿
𝑓1

, and

𝜎2 ∈ LSFP𝐶,𝛿
𝑓2

, then 𝜎1 ⊑ 𝜎2.

Proof Sketch. We prove the theorem by constructing a unified function that emulates the entire

flow function family and applying Tarski’s fixed-point theorem [111]. A detailed proof is provided

in the supplementary material due to space constraints. □

Example 3.3 (A More Precise Flow Function for Zero Analysis). In the zero analysis of Example 3.2,

the flow function 𝑓𝑍⟦𝑥 = mux(𝑤,𝑦, 𝑧)⟧(𝜎) = 𝜎 [𝑥 ↦→ 𝜎 (𝑦) ⊔ 𝜎 (𝑧)] introduces imprecision by

ignoring the path condition𝑤 . We present a more precise alternative, 𝑓 ′
𝑍
⟦𝑥 = mux(𝑤,𝑦, 𝑧)⟧, that

explicitly accounts for the condition:

𝑓 ′𝑍⟦𝑥 = mux(𝑤,𝑦, 𝑧)⟧(𝜎) =
{
𝜎 [𝑥 ↦→ ⊥] if 𝜎 (𝑤) = ⊥, 𝜎 [𝑥 ↦→ 𝜎 (𝑧)] if 𝜎 (𝑤) = 𝑍,

𝜎 [𝑥 ↦→ 𝜎 (𝑦)] if 𝜎 (𝑤) = 𝑁, 𝜎 [𝑥 ↦→ 𝜎 (𝑦) ⊔ 𝜎 (𝑧)] otherwise .

It is straightforward to verify by case analysis that 𝑓 ′
𝑍
⟦𝑥 = mux(𝑤,𝑦, 𝑧)⟧ ⊑ 𝑓𝑍⟦𝑥 = mux(𝑤,𝑦, 𝑧)⟧.

By defining all other cases of 𝑓 ′
𝑍
⟦𝜄⟧ identically to 𝑓𝑍⟦𝜄⟧, we obtain 𝑓 ′

𝑍
⊑ 𝑓𝑍 . Then, by Theorem 3.6,

the corresponding least fixed-point solution 𝜎 ′ ∈ LSFP𝐶,𝛿
𝑓 ′
𝑍

is more precise than 𝜎 ∈ LSFP𝐶,𝛿
𝑓𝑍

, i.e.,

𝜎 ′ ⊑ 𝜎 .

3.5 HVFA Instances for Lightweight Chisel Verification
By specifying different problem-specific lattices, stimulus descriptions, and flow function families,

various HVFAs can be instantiated to suit distinct application goals. As an illustration, this section

presents representative instances that support our lightweight analyses for critical Chisel verifi-

cation tasks, including bug detection and security analysis, as evaluated in Section 5. Since these

instances follow relatively standard formulations, we omit detailed discussion. To save space, we

reuse the template path-insensitive flow function family from Example 3.1 and only specify the

parts that differ.

3.5.1 Hardware Bug Detection. ChiSA identifies violable assertions (Section 5.1) by leveraging

interval analysis (Example 3.4) and constant propagation analysis (Example 3.5) to approximate

assertion violation conditions.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:17

Example 3.4. Interval analysis computes value ranges for each circuit location.

• Lattice: ⟨𝐿𝐼 , ⊑𝐼 ⟩, where 𝐿𝐼 = Interval ∪ {⊥} and: Interval := {[𝑚,𝑛] | 𝑚 ∈ {−∞} ∪ Z ∧ 𝑛 ∈
Z∪ {+∞} ∧𝑚 ≤ 𝑛} with ∀𝑥 ∈ Z. −∞ ≤ 𝑥 ≤ +∞. The abstraction function is 𝛼𝐼 (𝑛) = [𝑛, 𝑛]. The
partial order is defined as: ⊥ ⊑𝐼 𝑙 for all 𝑙 ∈ 𝐿𝐼 , and [𝑎, 𝑏] ⊑𝐼 [𝑐, 𝑑] iff. 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 .

• Stimulus Description: 𝛿𝐼 (𝑥) = [−∞,+∞].
• Flow Function Family: ⟦𝑦 op 𝑧⟧𝐼𝜎 = 𝜎 (𝑦) opI 𝜎 (𝑧), where [𝑎, 𝑏] opI [𝑐, 𝑑] = [min{𝑚 op 𝑛 | 𝑚 ∈
[𝑎, 𝑏] ∧ 𝑛 ∈ [𝑐, 𝑑]},max{𝑚 op 𝑛 | 𝑚 ∈ [𝑎, 𝑏] ∧ 𝑛 ∈ [𝑐, 𝑑]}] and 𝑙 opI ⊥ = ⊥ (symmetric).

Discussion About the Interval Lattice in Practice. The interval lattice 𝐿𝐼 in Example 3.4 has in-

finite height and thus does not satisfy the convergence condition in Theorem 3.4, meaning that

convergence of Algorithm 1 in this case is not theoretically guaranteed by the theorem. However,

in practice, variables in Chisel have fixed-width integer types, such as UInt<3> for unsigned 3-bit

integers and SInt<4> for signed 4-bit integers. Consequently, the top lattice element ⊤ for a vari-

able of type UInt<n> is [0, 2𝑛 − 1], and for SInt<n>, it is [−2𝑛−1, 2𝑛−1 − 1]—both bounded ranges

rather than the unbounded [−∞,+∞]. Thus, the practical interval lattice has finite height, and the

interval analysis in practice will converge as guaranteed by Theorem 3.4. For completeness, note

that convergence over unbounded mathematical integers in Example 3.4 can be ensured using a

standard widening operator [82]. We omit further discussion of widening, as it is a well-established

technique, and our Chisel interval analysis already converges in practice without it.

Example 3.5. Constant propagation analysis tracks constants flowing through circuit locations.

• Lattice: ⟨𝐿𝐶 , ⊑𝐶⟩, where 𝐿𝐶 = Z∪ {⊥,⊤}. The abstraction function is 𝛼𝐶 (𝑛) = 𝑛. The partial order

is defined as: ∀𝑙 ∈ 𝐿𝐶 . ⊥ ⊑𝐶 𝑙 ⊑𝐶 ⊤.
• Stimulus Description: 𝛿𝐶 (𝑥) = ⊤.
• Flow Function Family: ⟦𝑦 op 𝑧⟧𝐶𝜎 = 𝜎 (𝑦) opC 𝜎 (𝑧), where𝑚 opC 𝑛 =𝑚 op 𝑛 if𝑚,𝑛 ∈ Z, 𝑙 opC ⊥ =

⊥ if 𝑙 ∈ 𝐿𝐶 , 𝑙 opC ⊤ = ⊤ if 𝑙 ∈ 𝐿𝐶 − {⊥} (symmetric for both ⊥ and ⊤).
3.5.2 Hardware Security Analysis. ChiSA detects confidentiality and integrity violations by iden-

tifying taint flows (Section 5.2) from secret sources to public sinks or from untrusted sources to

trusted sinks with the help of reachability analysis (Example 3.6).

Example 3.6. Reachability analysis computes which circuit locations are reachable from given

sources in Source.
• Lattice: ⟨𝐿𝑇 , ⊑𝑇 ⟩, where 𝐿𝑇 = {⊥,⊤} with ⊥ ⊑𝑇 ⊤. The abstraction function is 𝛼𝑇 (𝑛) = ⊥. A
location with abstract value ⊤ is considered reachable.

• Stimulus Description: 𝛿𝑇 (𝑥) = ⊤ if 𝑥 ∈ Source, otherwise 𝛿𝑇 (𝑥) = ⊥.
• Flow Function Family: ⟦𝑦 op 𝑧⟧𝑇𝜎 = 𝜎 (𝑦) ⊔𝑇 𝜎 (𝑧), ⟦mux(𝑤,𝑦, 𝑧)⟧𝑇𝜎 = 𝜎 (𝑤) ⊔𝑇 𝜎 (𝑦) ⊔𝑇 𝜎 (𝑧).

4 ChiSA: A Proof of Concept
As a proof of concept for our theoretical foundations in Sections 2 and 3, we develop ChiSA (30K+

LoC), the first Chisel static analyzer capable of analyzing intricate hardware value flows to enable

sophisticated analyses for critical Chisel verification tasks, such as bug detection and security

analysis. To support future research and facilitate the development of new Chisel analyses, a

substantial portion of the codebase is dedicated to constructing reusable infrastructure. This section

offers a brief overview of how this infrastructure supports ChiSA’s end-to-end analysis workflow.

ChiSA’s core components—its IR (ChAIR) and fundamental analyses—are designed and imple-

mented based on the theoretical foundations of 𝜆𝐶 (Section 2) and HVFA (Section 3), respectively.

Due to space constraints, we do not provide detailed descriptions of ChiSA’s individual components;

interested readers can refer to our open-source code and documentation for implementation details

and engineering specifics.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:18 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Chisel
Design

Input

ForwardAnalysis
Results

Fundamental Analyses

Chisel Verification Tasks①

Hardware Abstraction

Frontend

Chisel Bug DetectionChisel Compiler IR Builder

Support

Common Facilities
Temporal Relation Graph

④

Analysis Manager

Build ②

Output

⑤

Multiple Analyses Management

New Analysis Dev. & Integration

Dispatched
to Analyses ③

Executed
on IR

Chisel Security Analysis ...

⑥
On-Demand Sliced Circuit

Digital Dependency Graph

Module Instantiation Graph

ChAIR

ChiSA: Chisel Static Analyzer

Hardware Value Flow Analysis（HVFA）
Interval Analysis

Cross-Module Flow Analysis

Constant Propagation Analysis Reachability Analysis

Register Reset Analysis Memory Flow Analysis

...

Synchronous Flow Function ModelSynchronized Fixed-Point Solver

Hardware Value Flow Graph ...Clock Tree

Fig. 3. The architecture and end-to-end workflow of ChiSA.

Figure 3 illustrates ChiSA’s architecture and end-to-end workflow, which are inspired by high-

quality software analysis frameworks [20, 64, 109]. ChiSA takes a Chisel hardware design (or a

Chisel program) as input and produces analysis results such as bug reports or security warnings:

• 1 & 2 : Given a Chisel design as input, the ChiSA frontend first builds our ChAIR by reusing

standard passes from Chisel’s official compiler [12, 13] for common compilation tasks, followed

by a dedicated IR builder that applies ChiSA’s custom transformations to generate ChAIR.

• 3 & 4 : Next, the analysis management system dispatches the IR to the analyses requested by

users and orchestrates their executions, managing possible intricate analysis dependencies and

configurations. This system also provides mechanisms that facilitate developers to develop and

integrate new analyses by reusing existing ones.

• 5 : Analyses for Chisel verification tasks require substantial infrastructure support. Central to

this are various hardware value flow analyses (HVFAs) that provide fundamental information

about Chisel hardware designs. Additionally, ChiSA offers common facilities including a rich set

of useful graph representations built on top of ChAIR and a circuit slicing tool to help hardware

designers narrow down the scope of bug localization during debugging. These components are

general-purpose and designed to be reusable for future analyses.

• 6 : Finally, the analysis manager outputs the analysis results as bug reports or security warnings,

depending on the specific verification tasks.

5 Evaluation
To validate ChiSA’s effectiveness for Chisel verification, we address the following research questions:

RQ1. How does ChiSA support hardware bug detection compared to bounded model checking?

RQ2. How does ChiSA perform in hardware security analysis compared to secure type systems?

To our knowledge, no existing static analysis work can detect our target Chisel bugs and security

vulnerabilities, as these require sophisticated reasoning about hardware value flows—capabilities

beyond current AST-based analyses in the Chisel compiler (see the next paragraph). Consequently,

we compare ChiSA against state-of-the-art techniques in respective verification tasks: bounded

model checking for bug detection and secure type systems for security analysis.

Comparison with Official Chisel Compiler. The official Chisel compiler provides only basic static

analyses (e.g., type checking) operating on the Firrtl AST, with constant propagation as its sole data

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:19

flow analysis. To address the potential concern regarding how ChiSA performs against the only

available comparable analysis, we compared both implementations on the Chisel compiler’s official

test suite (877 tests). ChiSA’s constant propagation identified 99.8% of the constants detected by the

official implementation (20,509 constants total) while achieving superior performance (1.5s vs. 2.1s).

This result is significant given that the official compiler’s constant propagation is highly optimized

and specifically designed to exploit the Firrtl AST information. The results (comparable soundness

and precision) indirectly demonstrates that ChiSA’s streamlined IR (Section 2) effectively preserves

essential semantic information from the Firrtl AST level, while also validating ChiSA’s fundamental

analytical capabilities in non-verification tasks.

Benchmarks. To support thorough evaluation of both ChiSA and future research on Chisel

static analysis, we provide ChiSABench, a comprehensive Chisel static analysis benchmark suite

encompassing over eleven million lines of code.

Real-world Chisel projects typically involve a mix of heterogeneous languages—including hard-

ware languages such as Chisel and Verilog, software languages such as Scala, Java, and C, and

assembly languages like RISC-V—each with its own build system and dependency management. In

practice, only specific version combinations of these toolchains and dependencies are known to

work, making it cumbersome to build all benchmarks in ChiSABench from scratch.

To address this, we invested considerable effort to pre-elaborate all designs in ChiSABench

into standalone Firrtl [63] files, eliminating the need for tedious environment setup or project-

specific build steps. This greatly enhances ChiSABench’s out-of-the-box accessibility and hands-

on usability for future research. Additionally, although the TrustHub [102, 104] benchmark was

originally written in Verilog [1], we incorporate it in ChiSABench due to the absence of authoritative

security benchmarks for Chisel. To make it compatible, we convert it to Firrtl using Yosys [11], a

widely adopted open-source hardware synthesis tool that supports Verilog-to-Firrtl translation, as

recommended by the official Firrtl project itself [12].

As summarized in Table 1, ChiSABench distinguishes itself through the following attributes:

• Authority: The hardware designs in ChiSABench are primarily drawn from Chisel’s official

toolchain [12–14] and from projects endorsed by the Chisel community [32].

• Diversity:

(1) Language Feature Diversity: ChiSABench includes official compiler and simulator test cases

that exercise a comprehensive spectrum of Chisel language features.

(2) Design Purpose Diversity: ChiSABench includes awide range of real-world applications, such as

system-on-chip (SoC), network-on-chip (NoC), deep neural network (DNN) accelerators, and

vector co-processors. Notably, it also incorporates security-relevant benchmarks, including

information leak trojans from the widely used TrustHub suite [102, 104] and secure type

system tests from the state-of-the-art ChiselFlow project [47], facilitating evaluation of

security-oriented analyses.

(3) Code Scale Diversity: ChiSABench spans designs ranging from a few dozen lines to over seven

million lines of code, enabling evaluation across projects of vastly different sizes.

• Real-World Impact: ChiSABench features numerous popular open-source Chisel hardware projects

with significant community adoption—many with thousands of GitHub stars. These projects,

categorized as real-world and large-scale in Table 1, reflect practical relevance and ensure that

analyses evaluated on ChiSABench are applicable to production-level designs.

Implementation. To balance fine-grained control over analysis efficiency with seamless integra-

tion into the Chisel ecosystem (written in Scala), we choose to implement ChiSA in Java. The

ChiSA codebase comprises over 30K lines of Java code. To ensure robustness, we have thoroughly

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:20 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Table 1. Overview of ChiSABench. Characteristic denotes the primary attribute of each benchmark category.
Design Purpose describes the original design intent of each benchmark. Benchmark lists the names of all
benchmarks. #Designs indicates the number of hardware designs in each benchmark. LoC reports the total
lines of pre-elaborated Chisel hardware designs in Firrtl [63] that enhances accessibility and usability.

Characteristic Design Purpose Benchmark #Designs LoC

Feature-Diverse Official Toolchain Tests Chisel3 [12–14] 877 224,845

Real-World

System-on-Chip

Rocket [16] 2 560,405

BOOM [23] 1 550,147

Quasar [6] 1 159,179

Sodor [100] 5 21,109

RiscvMini [99] 1 2,971

Network-on-Chip

IceNet [98] 1 236,506

Constellation [124] 1 5,389

Deep Neural Network Accelerator Gemmini [50] 1 632,327

Vector Co-Processor Hwacha [76] 1 553,087

Large-Scale System on Chip XiangShan [119] 1 7,176,167

Vulnerable

Information Leak Trojan TrustHub [102, 104] 25 1,155,854

Secure Type System Tests ChiselFlow [47] 18 657

Total: 935 11,278,643

exercised all analyses in ChiSA across the entire ChiSABench suite (11M+ LoC), with no crashes

observed. We will publicly release both ChiSA and ChiSABench to support future research and

development in static analysis for Chisel.

Experimental Setup. All experiments were conducted on an Intel Xeon 2.2GHz machine with

the JVM heap memory capped at 64GB. We evaluate ChiSA on different portions of ChiSABench

(Table 1), selectively chosen to align with the specific goals of each experiment. The rationale for

each selection is provided in the corresponding subsections.

5.1 RQ1: Hardware Bug Detection — ChiSA vs. Bounded Model Checking
Hardware bug detection remains a highly challenging task, even in industrial settings. According

to Siemens’s 2024 global industry study [49], fewer than 15% of hardware projects reported zero

bug escapes into production, despite substantial verification investments. Among these bugs, logic

errors have consistently been the leading cause over the past decades [49]. A widely adopted

paradigm for detecting such errors is assertion-based verification (ABV) [115], which checks for

violations of assertions that encode correctness properties. Therefore, we select assertion violation

detection as a representative task to evaluate ChiSA’s lightweightness and effectiveness in hardware

bug detection.

The state-of-the-art technique for automated assertion violation detection in Chisel is bounded

model checking (BMC), provided by ChiselTest [73] (hereafter referred to as ChiselTest-BMC).

ChiselTest-BMC serves as the BMC backend in most of the recent Chisel verification efforts [42,

105, 121], including the latest one [105]. While BMC can perform well on small-scale designs, it

fundamentally struggles to scale to real-world, complex hardware designs with millions of lines of

code, due to the well-known state explosion problem [30]. This is exactly the scenario where static

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:21

Table 2. Results of ChiSA’s static assertion analysis compared to ChiselTest-BMC [73]. For each benchmark,
we report the number of violable assertions detected (#Violable), those partially validated by manually writing
assertion-triggering module-level testbenches (#P-Validated), the number of designs the tool failed to handle
due to crashes (#Crashes), and total runtime (in seconds). ChiselTest-BMC was configured with a 10-cycle
bound. It failed on all complex real-world designs, producing various errors (detailed in Section 5.1).

Feature Benchmark LoC

ChiSA ChiselTest-BMC

#Violable

(#P-Validated)

#Crashes

Time

(s)

#Violable

(#P-Validated)

#Crashes

Time

(s)

Small-Scale

Chisel3

(877 designs)

256

(on average)

25 (24) 0 3.1 139 (139) 72 2776.3

Real-World

XiangShan 7,176,167 28 (23) 0 145.3 Assumption Errors

Gemmini 632,327 8 (7) 0 10.7 Internal Errors

Rocket 560,405 13 (13) 0 9.6 Incomplete Errors & Internal Errors

Hwacha 553,087 7 (7) 0 10.8 Internal Errors

Boom 550,147 7 (3) 0 17.6 Incomplete Errors

IceNet 236,506 0 (0) 0 3.8 Incomplete Errors

Constellation 5,389 6 (3) 0 0.1 Incomplete Errors

Total: 9,714,028 69 (56) 0 197.9 0 (0) 8 —

analysis can serve as a lightweight complement—requiring significantly less time while still being

effective.

ChiSA’s static assertion analysis detects assertion violations by approximating the conditions

under which an assertion might be violated, leveraging two HVFA instances: interval analysis

(Example 3.4) and constant propagation (Example 3.5). Although this approximation-based approach

is inherently less accurate than BMC’s exhaustive state enumeration, it remains effective on large,

real-world hardware designs while being significantly more lightweight. To demonstrate this,

we applied ChiSA’s static assertion analysis to all Chisel designs in ChiSABench that include

developer-inserted, real-world embedded assertions.

As shown in Table 2, ChiSA efficiently completed whole-program analysis on real-world designs

totaling over 9 million lines of code in under 200 seconds, identifying 69 potentially violable asser-

tions. Due to the large codebase and complexity of these projects, manually verifying all detected

assertions through system-level testbenches is infeasible. Instead, we partially validated ChiSA’s

results by constructing module-level testbenches: 56 of the flagged assertions were successfully

triggered, each causing the corresponding assertion to fail. On average, crafting each testbench

involved manually inspecting thousands of lines of hardware module code to figure out the assertion

violation scenario. This manual validation provides partial confirmation of ChiSA’s effectiveness in

uncovering risky assertion violations. Notably, eight assertion violations were recognized by the

developers and scheduled for future fixes—further showcasing the potential of static analysis to aid

in detecting hardware bugs. All testbenches used to trigger these assertion failures will be included

in our artifact.

In contrast, ChiselTest-BMC failed to analyze any of these real-world designs, reporting various

types of errors stemming from its own limitations:

• Incomplete Errors: Themost common failure mode was incomplete errors, observed in four designs.

These were caused by the presence of external modules whose definitions were inaccessible—a

common scenario in hardware development due to the frequent use of intellectual property

(IP) cores. ChiSA handles such cases by supporting incomplete analysis through automatic

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:22 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

and conservative approximation of external component behavior—giving it an advantage over

ChiselTest-BMC in realistic design settings.

• Assumption Errors: ChiselTest-BMC failed to analyze the XiangShan system-on-chip (SoC) [119],

reporting an assumption error due to unmet internal expectations, such as requiring exactly one

input port named clock. This suggests that the assumptions underpinning ChiselTest-BMC are

too narrow to accommodate popular and production-ready designs such as XiangShan, which

has been successfully taped out [119]. These assumptions are required by ChiselTest-BMC to

construct a precise model of the hardware design for property checking. In contrast, ChiSA does

not rely on such assumptions, thanks to the over-approximate nature of static analysis—making

it more applicable to complex, real-world scenarios.

• Internal Errors: The remaining three designs triggered internal errors due to unhandled edge

cases or limitations in the tool’s implementation, producing error messages like “Internal Error!

Please file an issue at our repository.” The official ChiselTest-BMC test suite [4] primarily consists

of small examples averaging fewer than 100 lines of code, which do not reflect the complexity

and scale of real-world Chisel designs. This suggests that, although ChiselTest-BMC represents

the current state of the art, it has not been adequately tested against real-world cases.

To further highlight ChiSA’s lightweight nature, we additionally evaluated both tools on 877

small-scale, simpler Chisel designs (average 256 LoC), where runtime statistics for ChiselTest-BMC

could be obtained. As shown in Table 2, ChiSA completed the analysis of all these designs in just 3

seconds, a significant reduction compared to the 2776 seconds required by ChiselTest-BMC. Even

in this small-scale evaluation, ChiselTest-BMC reported 72 crashes, in stark contrast to ChiSA,

which completed all analyses without a single failure.

It is also evident from Table 2 that although ChiSA demonstrates promising results on complex

real-world designs, it is less capable of uncovering violable assertions than ChiselTest-BMC in cases

where BMC works well. This is because ChiSA deliberately trades soundness for precision here to

reduce false positives and enhance practical usability. Specifically, a Chisel assertion consists of

a predicate signal and an enable signal, and triggers a failure when predicate is false while
enable is true. A sound approach would flag all assertions where predicate may be false and
enablemay be true, but in practice, this leads to many false positives. To address this issue, ChiSA

flags only those assertions where the predicate must be false while the enable signal may be

true. This approach significantly reduces false positives while maintaining sufficient soundness to

remain useful, as already illustrated via experiments on complex, real-world Chisel designs.

Case Study. To illustrate the violable assertions identified by ChiSA in Table 2, we present a

representative case that has been recognized by the developers and scheduled for future fixes.

This assertion violation was found in the DCache module (6.6K LoC) of the Rocket [16] system-

on-chip (SoC), and takes the form (simplified for readability) assert(clock, release_ack_wait,
grantIsVoluntary, "A ReleaseAck was unexpected by the dcache.") in ChAIR, ChiSA’s

intermediate representation. This assertion ensures that ReleaseAck messages—a type of acknowl-

edgement in the TileLink protocol [62]—arrive only when the cache expects them. Violating this

assertion could signal a protocol mismatch, potentially leading to inconsistent cache states or

deadlocks. The assertion fails when the predicate signal release_ack_wait is false (i.e., the

cache is not expecting an acknowledgment), while the enable signal grantIsVoluntary is true
(i.e., a ReleaseAck message is present). The clock argument is simply the signal used to drive

runtime assertion checks and does not affect the assertion logic itself. ChiSA detects this assertion

as potentially violable by querying the results of constant propagation and interval analysis. It

determines that release_ack_wait is statically false, while grantIsVoluntary may be true,
thereby flagging the assertion as potentially violated. Our test case triggers this assertion violation

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:23

Table 3. Results of ChiSA’s taint analysis compared to the secure type system provided by ChiselFlow [47].
#Designs denotes the number of designs and Function denotes their hardware functionality. “*” indicates
ChiselFlow’s developer-craftedmicro-benchmarkwith no specific hardware functionality. For each benchmark,
we report the number of detected unintended information flows (#Vulnerabilities), including false positives
(#FP) and false negatives (#FN), the number of required annotations (#Annotations)—sources/sinks for ChiSA,
type labels for ChiselFlow—and analysis time in seconds. “—” denotes that ChiselFlow could not be applied
due to the prohibitive annotation overhead. For the ChiselFlow benchmark, since the ground truth is derived
from ChiselFlow’s own results, we omit redundant reporting in the ChiselFlow columns.

Benchmark

#Designs

×
Function

LoC

ChiSA ChiselFlow

#Vulnerabilities

(#FP / #FN)

#Annotations

(#Sources / #Sinks)

Time

(s)

#Annotations

(Type Labels)

Time

(s)

ChiselFlow 18 × * 655 19 (1 / 0) 44 (25 / 19) 0.006 228 14.475

TrustHub

19 × AES [85] 1,004,180 54 (0 / 0) 73 (19 / 54) 0.175

—

3 × ISCAS89 [21] 143,440 3 (0 / 0) 6 (3 / 3) 0.435

1 × PIC16F84 [65] 5,932 1 (0 / 0) 2 (1 / 1) 0.017

2 × RSA [83] 2,302 2 (0 / 0) 4 (2 / 2) 0.005

Total: 1,155,854 60 (0 / 0) 85 (25 / 60) 0.632

by issuing a voluntary release operation and delivering the corresponding ReleaseAck in the same

clock cycle, revealing that the DCache fails to handle a legal scenario in which acknowledgments

arrive with minimal latency during valid protocol transactions.

5.2 RQ2: Hardware Security Analysis — ChiSA vs. Secure Type System
Hardware security has become increasingly critical in this new golden age of computer architec-

ture [53, 54]. A fundamental road for uncovering insecure hardware behavior is the detection of

unintended information flows [56]. We therefore select this task—detecting unintended information

flows—as a representative case to evaluate ChiSA’s lightweightness and effectiveness in hardware

security analysis. Because evaluating unintended information flow detection requires ground-truth

knowledge of design intent, we limit our evaluation to the ChiselFlow [47] and TrustHub [102, 104]

benchmarks from the ChiSABench suite, both of which include ground-truth labels for unintended

information flows.

The state-of-the-art in hardware security for Chisel—SecChisel [39, 40] and ChiselFlow [47]—

relies on extending Chisel’s type system with security labels to detect unintended information

flows via type annotations. However, this type-system-based approach requires substantial manual

annotation effort [91, 92] that scales with code size, placing a significant burden on hardware

designers and limiting its adoption in large, real-world projects. For example, as shown in Table 3,

ChiselFlow requires as many as 228 type labels to detect only 18 unintended flows in its own

benchmark, which contains just 657 lines of code. We do not include SecChisel in this evaluation

because it is not open-source and its core methodology closely mirrors that of ChiselFlow.

ChiSA’s taint analysis detects unintended information flows—referred to as taint flows—by track-

ing value flows from private sources to public sinks (confidentiality violations) or from untrusted

sources to trusted sinks (integrity violations). It performs this tracking via the reachability analysis

(Example 3.6) powered by HVFA. Unlike ChiselFlow, which requires fine-grained type annotations

throughout the entire flow path—including all intermediate variables and statements—ChiSA’s

taint analysis only requires users to annotate sources and sinks via a lightweight configuration file

to express their security intent and will automatically check whether there’re unintended taint

flows between from specified sources to sinks. As a result, the annotation effort required by our

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:24 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

approach scales with the hardware design’s security goals expressed in source/sink pairs, rather

than with the code size (as required by ChiselFlow’s type annotations), drastically reducing the

manual burden.

As shown in Table 3, ChiSA’s taint analysis detects all 18 taint flows in the ChiselFlow benchmark

using just 44 source/sink annotations—a substantial reduction compared to ChiselFlow’s 228 type

annotations. This demonstrates ChiSA’s lightweight annotation burden compared to ChiselFlow,

significantly reducing manual effort and making it far more practical for real-world hardware

security analysis.

Another important advantage of ChiSA over ChiselFlow is its ability to be retroactively applied

to large, existing Chisel codebases that lack security type labels. This is a far more common scenario

in practice, because real-world projects typically adopt the standard Chisel type system, which is

officially supported and actively maintained, whereas ChiselFlow remains a research prototype

without active maintenance. As shown in Table 3, ChiSA efficiently detects all 60 information-

leak vulnerabilities in the TrustHub benchmark—which comprises over a million lines of code—

using only 85 source/sink annotations provided as analysis configuration, exhibiting a lightweight

annotation burden at this scale. In contrast, ChiselFlow is inapplicable to TrustHub due to the

prohibitive manual effort required to retrofit millions of lines of existing code with its fine-grained

type system, whose annotation burden scales with code size.

The single false positive ChiSA reported on the ChiselFlow benchmark stems from its over-

approximate analysis, which may soundly flag infeasible taint flows that cannot occur in actual

executions. In contrast, ChiselFlow avoids this false positive by leveraging fine-grained type

annotations along the entire information flow path. These annotations can encode path conditions

using dependent types, allowing ChiselFlow to distinguish merged flows with higher precision.

Nevertheless, we argue that this modest loss of precision is a worthwhile trade-off for the significant

reduction in manual annotation effort afforded by ChiSA.

Case Study. To shed light on the vulnerabilities detected by ChiSA, we examine AES-T100 (1.2K

LoC), the first case in TrustHub’s information-leak vulnerability suite [102, 104] as an example. This

benchmark contains a cryptographic chip running the AES algorithm that has been compromised

with a hardware Trojan, which leaks the secret key through a covert channel. Following the security

intent described in the benchmark’s official documentation, we configure ChiSA’s taint analysis

by marking the input port top.key—which carries the secret AES key—as a secret source, and

the output port top.Capacitance—a signal observable via physical measurements—as a public

sink. Leveraging its underlying hardware value flow analysis, ChiSA automatically identifies an

unintended information flow from top.key to top.Capacitance without further manual effort

beyond these two source/sink configurations, thereby revealing a violation of confidentiality and

indicating the presence of the Trojan. In contrast, existing secure type systems such as ChiselFlow

are not directly applicable, as AES-T100 was written using the standard type system rather than

ChiselFlow’s extended version. Although conceptually possible, retrofitting an existing codebase

with a new type system is highly impractical in reality: ChiselFlow’s own benchmark (655 LoC)

requires 228manual security annotations, highlighting the substantial annotation burden introduced

by its type-based approach. This case study underscores the practicality of ChiSA’s analysis for

identifying security vulnerabilities in unmodified, real-world hardware designs without requiring

intrusive code changes or extensive manual effort.

6 Related Work
Chisel Verification. Unlike ChiSA’s lightweight static analysis approach, existing Chisel verifica-

tion techniques largely adopt heavyweight methodologies inherited from the broader hardware

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:25

community, with the efficiency limitations already discussed in Section 1. Here, we examine these

efforts in greater detail, tracing their methodological roots to traditional hardware verification:

(1) Simulation-Based Testing. ChiselTest [101], integrated within the ScalaTest framework [7],

provides robust IDE support and continuous integration capabilities for executing unit-level simu-

lation tests. It runs simulations by interpreting either Chisel-generated Verilog via Verilator [106],

or Chisel’s compiler intermediate representation, Firrtl [63], via Treadle [14]. ChiselVerify [43]

extends ChiselTest by introducing coverage metrics [41], fuzzing capabilities [44], and features

specifically tailored for testing approximate hardware designs [37]. DESSERT [67], an advancement

over Strober [68], enhances simulation performance by translating Firrtl to FAME1 [110] for FPGA

acceleration, and supports efficient differential testing for Chisel designs.

Rather than comparing against dynamic testing approaches, we focus our evaluation on static

analysis versus other static techniques. This follows common practice, as static and dynamic

methods are generally considered orthogonal, each addressing distinct verification dimensions [2].

(2) Formal Verification. ChiselTest [73] and ChiselVerify [42] provide bounded model checking

(BMC) abilities by translating Firrtl designs into transition systems expressed in SMTLib [18] or

Btor2 [88], then solving them using Z3 SMT Solver [38] or BtorMC model checker [88]. CHA [121],

built atop ChiselTest, extends its assertion support to include SystemVerilog Assertions (SVAs)[5].

ChiselFV [117] also supports SVA but instead compiles Chisel with embedded assertions directly to

SystemVerilog and leverages SymbiYosys [10] for SystemVerilog BMC. Due to the well-known state

explosion problem [30], bounded model checking (BMC) suffers from poor scalability and is thus

typically applied only to small-scale designs [105, 118]. Chicala [46], inspired by V2C [3]—a Verilog

to C translator, translates Chisel designs into behaviorally equivalent Scala programs, which are

then verified using Stainless [9], a theorem-proving tool for Scala.

(3) Secure Type System. SecChisel [39, 40] and ChiselFlow [47], closely following the design of

SecVerilog [123], extend Chisel’s type system to express security policies via type annotations.

These annotations are translated into type constraints and then statically checked using the Z3

SMT solver [38] to detect violations of confidentiality and integrity properties.

Our evaluation (Section 5) compares ChiSA’s static analyses with representative techniques from

both (2) Formal Verification and (3) Secure Type Systems, showing that ChiSA provides an effective

and significantly more lightweight solution, particularly for large, real-world Chisel designs.

Static Analysis for Verilog. Despite Chisel’s current reliance on Verilog as a backend for compati-

bility with the existing commercial electronic design automation (EDA) ecosystem, these static

analyses designed for regular hand-written Verilog are ill-suited for Chisel-generated Verilog. Here

we review mainstream static analysis approaches developed for Verilog to clarify this mismatch, as

well as highlighting the need for Chisel-native static analyses that ChiSA provides.

The development of static analysis for Verilog remains far less mature than that for software

programming languages. In practice, static analysis for Verilog is overwhelmingly dominated by

linters, including open-source tools such as Slang [95], Verible [26], and SVLint [52], as well as

industrial-grade solutions like Spyglass Lint [107]. These tools perform syntactic, stylistic, and

pattern-based checks over abstract syntax trees (ASTs) to detect common issues in regular hand-

written Verilog early in the design cycle. However, linting rules that are effective for regular hand-

written Verilog can break down when applied to Chisel-generated Verilog. For example, a widely

adopted rule flags variables in combinational always blocks that are not assigned along all execution
paths—a heuristic commonly used to detect unintended latch inference. Yet this rule becomes totally

useless in Chisel-generated Verilog, which, due to Chisel’s structural modeling semantics, does

not emit combinational always blocks at all. This disconnect highlights the limitations of directly

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:26 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

reusing Verilog-oriented static analyses for Chisel workflows and underscores the need for dedicated

analyses specifically tailored to Chisel’s design idioms.

Other tools, such as Pyverilog [108] and VeriPy [96], construct graph-based representations from

Verilog ASTs to perform control-flow and data-flow analyses. These approaches are well-suited

to Verilog’s behavioral modeling constructs, such as always blocks, which encapsulate control

and computation logic. In contrast, Chisel eschews behavioral modeling in favor of structural

descriptions targeting synthesizable hardware descriptions. As a result, the Verilog emitted by

Chisel tends to contain flat, repetitive always blocks that encode simple register connections,

with minimal embedded control or computation logic. This flattening substantially diminishes the

effectiveness of control/data-flow analyses designed for regular hand-written Verilog. Altogether,

the structural gap between regular hand-written Verilog and Chisel-generated Verilog highlights

the inadequacy of repurposing Verilog-based static analysis tools for Chisel.

Not only are existing Verilog static analysis tools inherently ill-suited for reuse in Chisel contexts,

as discussed above, but even static analyses specifically tailored for Chisel-generated Verilog

will still face fundamental limitations. The key issue is that important Chisel-specific semantic

information is lost during the Verilog generation process, making it infeasible to reconstruct

high-level analysis targets. This further underscores the necessity of Chisel-native static analyses

that ChiSA provides. We highlight this mismatch with three intuitive examples: First, assertions

written in Chisel do not survive the standard translation into Verilog, eliminating the possibility of

performing static assertion analysis (discussed in Section 5.1) directly on the generated Verilog.

Second, while Chisel source locations are embedded in the generated Verilog, they are stored only

in comments. Because comments are discarded during parsing, this information is inaccessible to

Verilog-based analysis tools, undermining traceability of analysis results. For instance, applying

circuit slicing—provided by ChiSA to reduce bug localization scope for hardware designers (though

not discussed in detail)—would require tough manual effort to trace analysis results back to the

original Chisel code, substantially harming usability. Third, Chisel treats memories as distinct

language constructs, allowing native analyses to handle them differently from register vectors. In

Chisel-generated Verilog, however, memories are lowered into register vectors indistinguishable

from manually written register vectors. This erasure of semantic distinction prevents specialized

treatment of Chisel memories, such as modeling read/write latencies or resolving read-under-write

behavior—capabilities that facilitate more Chisel-targeted analysis.

Theoretical Foundations of Analysis for Traditional Hardware Description Languages (HDLs). Al-

though no prior theoretical foundations have been proposed for Chisel static analysis, analysis

theories do exist for traditional HDLs—most representatively, abstract interpretation for Verilog [84]

and VHDL [57–59]. Additionally, formal semantics for Verilog [25, 27, 79] and VHDL [60] can also

support analysis theories. However, these theories target the behavioral modeling paradigm of

traditional HDLs (as discussed in the Static Analysis for Verilog paragraph above) and formalize

heavyweight features specific to that paradigm, making them ill-suited to Chisel’s lightweight,

structural-oriented nature. To address this gap, we present the first theoretical foundation targeting

Chisel, capturing its essence in a minimal way to enable tractable reasoning about static analyses.

Lightweight Formal Methods for HDLs. Besides static analyses—the primary focus of this paper—

type systems constitute another representative class of lightweight formal methods that have been

extensively developed in the programming languages (PL) community. Advanced type systems

can facilitate static analyses by encoding richer semantic information in program and enforcing

stronger safety properties through type checking [87]. However, the standard type systems of

traditional HDLs (e.g., Verilog [1]) remain relatively basic and lack the expressive power and safety

guarantees common in PL research. Recently, several novel HDL type systems have been proposed

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:27

to encode richer semantic information in program and enforce stronger reliability-related properties

for safe composition [28, 89, 90].

For instance, timeline types [89, 90] have been proposed to encode timing constraints, thereby

preventing structural hazards that harm safe composition through type checking. In contrast,

because Chisel’s standard type system does not provide this timing information, ChiSA would need

to approximate this information if it were to detect timing-related issues such as structural hazards,

which introduces additional computational overhead and potential imprecision. Specifically, the

analysis would have to approximate the number of clock cycles it takes for a signal starting from

an input port to arrive at an output port by counting the register connections along paths in the

value flow graph (Definition 2.6). If Chisel were equipped with timeline types in the future, this

information would be immediately and precisely available, enabling more efficient and effective

static analyses in ChiSA for timing-related issues.

Another example is wire sorts [28], a type system designed for safe composition by enforcing

the absence of combinational loops via type checking. Similar to the discussion of timeline types

above, future analyses in ChiSA could also benefit from the combinational reachability information

encoded in wire sorts, if such a type system were integrated into Chisel.

7 Conclusions
This work establishes a theoretical foundation for Chisel static analysis. We introduced 𝜆𝐶 , a

minimal core calculus that captures the essence of Chisel while enabling rigorous reasoning

about static analysis. Building on 𝜆𝐶 , we formalized the hardware value flow analysis (HVFA)

problem, adapting classical data/value flow analysis from software to hardware by handling the

essential feature of Chisel, i.e., synchronous semantics of clock-driven hardware registers. We

proved key theorems establishing HVFA’s guarantees and limitations. As a proof of concept, we

developed ChiSA, the first Chisel static analyzer capable of analyzing intricate hardware value

flows for verification tasks such as bug detection and security analysis. To thoroughly evaluate

ChiSA’s effectiveness, we introduce ChiSABench, a comprehensive benchmark suite for Chisel

static analysis. Our evaluation on ChiSABench demonstrates that ChiSA offers an effective and

highly lightweight approach, significantly outperforming state-of-the-art techniques on large,

real-world Chisel designs. By open-sourcing both ChiSA (30K+ LoC) and ChiSABench (11M+ LoC),

we hope to facilitate future research in Chisel static analysis and inspire broader applications of

programming language techniques to hardware verification.

Acknowledgments
Wewould like to thank the anonymous reviewers for their helpful comments. This work is supported

in part by National Key R&D Program of China under Grant No. 2023YFB4503804 and National

Natural Science Foundation of China under Grant No. 62402210. Tian Tan, the co-corresponding

author, is also supported by Xiaomi Foundation.

Data-Availability Statement
We have provided an artifact [35] that automatically reproduces all experimental results presented

in Section 5 and includes the full open-source release of both ChiSA and ChiSABench as promised.

The artifact is available at https://doi.org/10.5281/zenodo.17700253. To reproduce the results, please

refer to the instructions provided in the accompanying README.pdf document within the artifact.

In addition, we have provided supplementary material [36] that presents the full specification

of ChAIR and complete proofs of key theoretical results omitted from the paper due to space

constraints. The supplementary material is available at https://doi.org/10.5281/zenodo.17623491.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.5281/zenodo.17700253
https://doi.org/10.5281/zenodo.17623491

18:28 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

References
[1] 2005. IEEE Standard for Verilog Hardware Description Language. doi:10.1109/IEEESTD.2006.99495 ISBN:

9780738148519.

[2] 2007. Static and Dynamic Analysis: Better Together. In Lecture Notes in Computer Science. Springer Berlin Heidelberg,

Berlin, Heidelberg, 302–302. doi:10.1007/978-3-540-76637-7_20

[3] 2016. v2c – A Verilog to C Translator. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,

Heidelberg, 580–586. doi:10.1007/978-3-662-49674-9_38 ISSN: 0302-9743, 1611-3349.

[4] 2021. Tests for ChiselTest Bounded Model Checker. https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/

chiseltest/formal/examples.

[5] 2023. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language. doi:10.

1109/ieeestd.2024.10458102 ISBN: 9798855705003.

[6] 2023. Quasar 2.0: Chisel equivalent of SweRV-EL2. https://github.com/Lampro-Mellon/Quasar/tree/

2bc0985afd670d0c9b1b6983b53c3c2b340fcb5a.

[7] 2025. ScalaTest: A testing tool for Scala and Java developers. https://github.com/scalatest/scalatest.

[8] 2025. SiFive. https://www.sifive.com/.

[9] 2025. Stainless: Verification Framework and Tool for Higher-order Scala Programs. https://github.com/epfl-lara/

stainless.

[10] 2025. SymbiYosys (sby): Front-end for Yosys-based Formal Verification Flows. https://github.com/YosysHQ/sby.

[11] 2025. Yosys Open SYnthesis Suite. https://github.com/YosysHQ/yosys.

[12] Chips Alliance. 2022. Firrtl: Flexible Intermediate Representation for RTL. https://github.com/chipsalliance/firrtl/

tree/v1.5.6.

[13] Chips Alliance. 2023. Chisel: A Modern Hardware Design Language. https://github.com/chipsalliance/chisel/tree/v3.

5.6.

[14] Chips Alliance. 2023. Treadle: A Chisel/Firrtl Execution Engine. https://github.com/chipsalliance/treadle/tree/v1.5.6.

[15] Krste Asanovic. 2020. Information on Coreplex IP Access. https://forums.sifive.com/t/information-on-coreplex-ip-

access/105/8.

[16] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,

Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup

Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian

Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical

Report UCB/EECS-2016-17. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[17] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and

Krste Asanović. 2012. Chisel: constructing hardware in a Scala embedded language. In Proceedings of the 49th Annual

Design Automation Conference. ACM, San Francisco California, 1216–1225. doi:10.1145/2228360.2228584

[18] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2025. The SMT-LIB Standard: Version 2.7. Technical Report.

Department of Computer Science, The University of Iowa.

[19] Scott Beamer and David Donofrio. 2020. Efficiently Exploiting Low Activity Factors to Accelerate RTL Simulation. In

2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, San Francisco, CA, USA, 1–6. doi:10.1109/DAC18072.

2020.9218632

[20] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

SIGPLAN Not. 44, 10 (Oct. 2009), 243–262. doi:10.1145/1639949.1640108

[21] F. Brglez, D. Bryan, and K. Kozminski. 1989. Combinational profiles of sequential benchmark circuits. In IEEE

International Symposium on Circuits and Systems. IEEE, Portland, OR, USA, 1929–1934. doi:10.1109/ISCAS.1989.100747

[22] Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, and Frederic Petrot. 2022. Toward Agile Hardware

Designs With Chisel: A Network Use Case. IEEE Des. Test 39, 1 (Feb. 2022), 77–84. doi:10.1109/MDAT.2021.3063339

[23] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The Berkeley Out-of-Order Machine (BOOM):

An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor. Technical Report UCB/EECS-2015-167.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html

[24] Vikas Chauhan, Neel Gala, and V. Kamakoti. 2016. ChADD: An ADD Based Chisel Compiler with Reduced Syntactic

Variance. In 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded

Systems (VLSID). IEEE, Kolkata, India, 499–504. doi:10.1109/VLSID.2016.44

[25] Qinlin Chen, Nairen Zhang, Jinpeng Wang, Tian Tan, Chang Xu, Xiaoxing Ma, and Yue Li. 2023. The Essence of

Verilog: A Tractable and Tested Operational Semantics for Verilog. Proc. ACM Program. Lang. 7, OOPSLA2 (Oct. 2023),

234–263. doi:10.1145/3622805

[26] Chipsalliance. 2025. Verible: A Suite of SystemVerilog Developer Tools, including a Parser, Style-linter, Formatter and

Language Server. https://github.com/chipsalliance/verible.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1007/978-3-540-76637-7_20
https://doi.org/10.1007/978-3-662-49674-9_38
https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/chiseltest/formal/examples
https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/chiseltest/formal/examples
https://doi.org/10.1109/ieeestd.2024.10458102
https://doi.org/10.1109/ieeestd.2024.10458102
https://github.com/Lampro-Mellon/Quasar/tree/2bc0985afd670d0c9b1b6983b53c3c2b340fcb5a
https://github.com/Lampro-Mellon/Quasar/tree/2bc0985afd670d0c9b1b6983b53c3c2b340fcb5a
https://github.com/scalatest/scalatest
https://www.sifive.com/
https://github.com/epfl-lara/stainless
https://github.com/epfl-lara/stainless
https://github.com/YosysHQ/sby
https://github.com/YosysHQ/yosys
https://github.com/chipsalliance/firrtl/tree/v1.5.6
https://github.com/chipsalliance/firrtl/tree/v1.5.6
https://github.com/chipsalliance/chisel/tree/v3.5.6
https://github.com/chipsalliance/chisel/tree/v3.5.6
https://github.com/chipsalliance/treadle/tree/v1.5.6
https://forums.sifive.com/t/information-on-coreplex-ip-access/105/8
https://forums.sifive.com/t/information-on-coreplex-ip-access/105/8
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1109/ISCAS.1989.100747
https://doi.org/10.1109/MDAT.2021.3063339
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://doi.org/10.1109/VLSID.2016.44
https://doi.org/10.1145/3622805
https://github.com/chipsalliance/verible

ChiSA: Static Analysis for Lightweight Chisel Verification 18:29

[27] Joonwon Choi, Jaewoo Kim, and Jeehoon Kang. 2025. Revamping Verilog Semantics for Foundational Verification.

Proc. ACM Program. Lang. 9, OOPSLA2 (Oct. 2025), 950–977. doi:10.1145/3763084

[28] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hardekopf. 2021. Wire sorts: a language

abstraction for safe hardware composition. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. ACM, Virtual Canada, 175–189. doi:10.1145/3453483.3454037

[29] Cristina Cifuentes, François Gauthier, Behnaz Hassanshahi, Padmanabhan Krishnan, and Davin McCall. 2023. The

role of program analysis in security vulnerability detection: Then and now. Computers & Security 135 (Dec. 2023),

103463. doi:10.1016/j.cose.2023.103463

[30] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2012. Model Checking and the State Explosion

Problem. In Tools for Practical Software Verification, Bertrand Meyer and Martin Nordio (Eds.). Vol. 7682. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1–30. doi:10.1007/978-3-642-35746-6_1 Series Title: Lecture Notes in Computer

Science.

[31] Chisel Community. 2025. How do I override the implicit clock or reset within a Module? https://www.chisel-

lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module.

[32] Chisel Community. 2025. Projects Using Chisel/FIRRTL. https://www.chisel-lang.org/community.

[33] Intel Corporation. 2025. Intel®Quartus®Prime Standard Edition User Guide. https://www.intel.com/content/www/

us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html.

[34] Perforce Corporation. 2025. How Static Analysis Automates Agile Software Development. https://www.perforce.

com/resources/kw/static-analysis-automates-agile-software-development.

[35] Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2025. ChiSA: Static Analysis for Lightweight Chisel

Verification (Artifact). doi:10.5281/zenodo.17700253

[36] Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2025. ChiSA: Static Analysis for Lightweight Chisel

Verification (Supplementary Material). doi:10.5281/zenodo.17623491

[37] Hans Jakob Damsgaard, Aleksandr Ometov, and Jari Nurmi. 2023. Verification of Approximate Hardware Designs

with ChiselVerify. In 2023 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, Aalborg, Denmark, 1–7.

doi:10.1109/NorCAS58970.2023.10305474

[38] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In 2008 Tools and Algorithms for

Construction and Analysis of Systems. Springer, Berlin, Heidelberg, 337–340. https://www.microsoft.com/en-

us/research/publication/z3-an-efficient-smt-solver/

[39] Shuwen Deng, Doğuhan Gümüşoğlu, Wenjie Xiong, Y. Serhan Gener, Onur Demir, and Jakub Szefer. 2017. SecChisel:

Language and Tool for Practical and Scalable Security Verification of Security-Aware Hardware Architectures.

https://eprint.iacr.org/2017/193 Published: Cryptology ePrint Archive, Paper 2017/193.

[40] Shuwen Deng, Doğuhan Gümüşoğlu, Wenjie Xiong, Sercan Sari, Y. Serhan Gener, Corine Lu, Onur Demir, and Jakub

Szefer. 2019. SecChisel Framework for Security Verification of Secure Processor Architectures. In Proceedings of the

8th International Workshop on Hardware and Architectural Support for Security and Privacy. ACM, Phoenix AZ USA,

1–8. doi:10.1145/3337167.3337174

[41] Andrew Dobis, Hans Jakob Damsgaard, Enrico Tolotto, Kasper Hesse, Tjark Petersen, and Martin Schoeberl. 2022.

Enabling Coverage-Based Verification in Chisel. In 2022 IEEE European Test Symposium (ETS). IEEE, Barcelona, Spain,

1–6. doi:10.1109/ETS54262.2022.9810435

[42] Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper Juul Hesse Rasmussen, Enrico Tolotto,

Simon Thye Andersen, Richard Lin, and Martin Schoeberl. 2023. Verification of Chisel Hardware Designs with

ChiselVerify. Microprocessors and Microsystems 96 (Feb. 2023), 104737. doi:10.1016/j.micpro.2022.104737

[43] Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye

Andersen, Richard Lin, and Martin Schoeberl. 2021. ChiselVerify: An Open-Source Hardware Verification Library

for Chisel and Scala. In 2021 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, Oslo, Norway, 1–7.

doi:10.1109/NorCAS53631.2021.9599869

[44] Amelia Dobis, Tjark Petersen, and Martin Schoeberl. 2021. Towards Functional Coverage-Driven Fuzzing for Chisel

Designs. (Nov. 2021). doi:10.3929/ETHZ-B-000539444 Medium: application/pdf,4 p. accepted version Publisher:

[object Object].

[45] EETimes. 2016. A Match Made in Chip Verification Heaven: Simulation and Emulation. https://www.eetimes.com/a-

match-made-in-chip-verification-heaven-simulation-and-emulation/.

[46] Weizhi Feng, Yicheng Liu, Jiaxiang Liu, David N Jansen, Lijun Zhang, and Zhilin Wu. 2024. Formally Verifying

Arithmetic Chisel Designs for All Bit Widths at Once. In Proceedings of the 61st ACM/IEEE Design Automation

Conference. ACM, San Francisco CA USA, 1–6. doi:10.1145/3649329.3657311

[47] Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. 2018. HyperFlow: A Processor Architecture

for Nonmalleable, Timing-Safe Information Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, Toronto Canada, 1583–1600. doi:10.1145/3243734.3243743

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3763084
https://doi.org/10.1145/3453483.3454037
https://doi.org/10.1016/j.cose.2023.103463
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.chisel-lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module
https://www.chisel-lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module
https://www.chisel-lang.org/community
https://www.intel.com/content/www/us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html
https://www.intel.com/content/www/us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html
https://www.perforce.com/resources/kw/static-analysis-automates-agile-software-development
https://www.perforce.com/resources/kw/static-analysis-automates-agile-software-development
https://doi.org/10.5281/zenodo.17700253
https://doi.org/10.5281/zenodo.17623491
https://doi.org/10.1109/NorCAS58970.2023.10305474
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://eprint.iacr.org/2017/193
https://doi.org/10.1145/3337167.3337174
https://doi.org/10.1109/ETS54262.2022.9810435
https://doi.org/10.1016/j.micpro.2022.104737
https://doi.org/10.1109/NorCAS53631.2021.9599869
https://doi.org/10.3929/ETHZ-B-000539444
https://www.eetimes.com/a-match-made-in-chip-verification-heaven-simulation-and-emulation/
https://www.eetimes.com/a-match-made-in-chip-verification-heaven-simulation-and-emulation/
https://doi.org/10.1145/3649329.3657311
https://doi.org/10.1145/3243734.3243743

18:30 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

[48] Bruno Ferres, Olivier Muller, and Frédéric Rousseau. 2023. A Chisel Framework for Flexible Design Space Exploration

through a Functional Approach. ACM Trans. Des. Autom. Electron. Syst. 28, 4 (July 2023), 1–31. doi:10.1145/3590769

[49] Harry Foster. 2024. IC/ASIC Functional Verification Trend Report - 2024. https://verificationacademy.com/topics/

planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-

study/.

[50] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb,

Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley,

Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning

Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,

San Francisco, CA, USA, 769–774. doi:10.1109/DAC18074.2021.9586216

[51] Youstina M. Halim, Khaled A. Ismail, Mohamed A. Abd El Ghany, Sameh A. Ibrahim, and Youssef M. Halim. 2022.

Reinforcement-Learning Based Method for Accelerating Functional Coverage Closure of Traffic Light Controller

Dynamic Digital Design. In 2022 32nd International Conference on Computer Theory and Applications (ICCTA). IEEE,

Alexandria, Egypt, 44–50. doi:10.1109/ICCTA58027.2022.10206069

[52] Naoya Hatta. 2025. SVLint: SystemVerilog Linter. https://github.com/dalance/svlint.

[53] John L. Hennessy and David A. Patterson. 2018. A new golden age for computer architecture: Domain-specific

hardware/software co-design, enhanced security, open instruction sets, and agile chip development. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA). 27–29. doi:10.1109/ISCA.2018.00011

[54] John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2

(Jan. 2019), 48–60. doi:10.1145/3282307 Place: New York, NY, USA Publisher: Association for Computing Machinery.

[55] Jim Hogan. 2013. The Science of SW Simulators, Acceleration, Prototyping, Emulation. https://www.deepchip.com/

items/0522-02.html.

[56] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2022. Hardware Information Flow Tracking. ACM Comput. Surv.

54, 4 (May 2022), 1–39. doi:10.1145/3447867

[57] Charles Hymans. 2002. Checking Safety Properties of Behavioral VHDL Descriptions by Abstract Interpretation.

In Static Analysis (Berlin, Heidelberg), Manuel V. Hermenegildo and Germán Puebla (Eds.). Springer, 444–460.

doi:10.1007/3-540-45789-5_31

[58] Charles Hymans. 2003. Design and Implementation of an Abstract Interpreter for VHDL. In Correct Hardware

Design and Verification Methods (Berlin, Heidelberg), Daniel Geist and Enrico Tronci (Eds.). Springer, 263–269.

doi:10.1007/978-3-540-39724-3_23

[59] Charles Hymans. 2005. Verification of an Error Correcting Code by Abstract Interpretation. In Verification, Model

Checking, and Abstract Interpretation (Berlin, Heidelberg), Radhia Cousot (Ed.). Springer, 330–345. doi:10.1007/978-3-

540-30579-8_22

[60] Vincent Iampietro. 2022. Formal Semantics of H-VHDL. (May 2022). https://hal.science/hal-03664656

[61] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java

and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (May 2001), 396–450. doi:10.1145/503502.503505

[62] SiFive Inc. 2025. SiFive TileLink Specification. https://www.sifive.com/documentation/tilelink/tilelink-spec/.

[63] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu Kim, Colin Schmidt,

Chick Markley, Jim Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction

languages, compiler frameworks, and transformations. In 2017 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD). IEEE, Irvine, CA, 209–216. doi:10.1109/ICCAD.2017.8203780

[64] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Static Analysis, Jens

Palsberg and Zhendong Su (Eds.). Vol. 5673. Springer Berlin Heidelberg, Berlin, Heidelberg, 238–255. doi:10.1007/978-

3-642-03237-0_17 Series Title: Lecture Notes in Computer Science.

[65] Sid Katzen. 2001. The PIC16F84 Microcontroller. In The Quintessential PIC Microcontroller, A. J. Sammes (Ed.). Springer

London, London, 77–104. doi:10.1007/978-1-4471-3704-7_4 Series Title: Computer Communications and Networks.

[66] Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. 2017. Data Flow Analysis: Theory and Practice (1 ed.). CRC

Press. doi:10.1201/9780849332517

[67] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach, and Krste Asanovic. 2018.

DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across Trillions of Cycles. In 2018

28th International Conference on Field Programmable Logic and Applications (FPL). IEEE, Dublin, Ireland, 76–764.

doi:10.1109/FPL.2018.00021

[68] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yunsup Lee, Jonathan Bachrach,

and Krste Asanovicc. 2016. Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL. In 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). IEEE, Seoul, South Korea, 128–139.

doi:10.1109/ISCA.2016.21

[69] Stephen Cole Kleene. 1952. Introduction to Metamathematics. North-Holland Publishing Company, Amsterdam.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3590769
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1109/ICCTA58027.2022.10206069
https://github.com/dalance/svlint
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.1145/3282307
https://www.deepchip.com/items/0522-02.html
https://www.deepchip.com/items/0522-02.html
https://doi.org/10.1145/3447867
https://doi.org/10.1007/3-540-45789-5_31
https://doi.org/10.1007/978-3-540-39724-3_23
https://doi.org/10.1007/978-3-540-30579-8_22
https://doi.org/10.1007/978-3-540-30579-8_22
https://hal.science/hal-03664656
https://doi.org/10.1145/503502.503505
https://www.sifive.com/documentation/tilelink/tilelink-spec/
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-1-4471-3704-7_4
https://doi.org/10.1201/9780849332517
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/ISCA.2016.21

ChiSA: Static Analysis for Lightweight Chisel Verification 18:31

[70] Anish Krishnakumar, Umit Ogras, Radu Marculescu, Mike Kishinevsky, and Trevor Mudge. 2023. Domain-Specific

Architectures: Research Problems and Promising Approaches. ACM Trans. Embed. Comput. Syst. 22, 2 (March 2023),

1–26. doi:10.1145/3563946

[71] Shriram Krishnamurthi. 2015. Desugaring in Practice: Opportunities and Challenges. In Proceedings of the 2015

Workshop on Partial Evaluation and Program Manipulation (Mumbai, India) (PEPM ’15). Association for Computing

Machinery, New York, NY, USA, 1–2. doi:10.1145/2678015.2678016

[72] Shriram Krishnamurthi, Benjamin S. Lerner, and Liam Elberty. 2019. The Next 700 Semantics: A Research Challenge.

In 3rd Summit on Advances in Programming Languages, SNAPL 2019, May 16-17, 2019, Providence, RI, USA (LIPIcs,

Vol. 136), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 9:1–9:14. doi:10.4230/LIPIcs.SNAPL.2019.9

[73] Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2021. Open-Source Formal Verification for Chisel. (2021).

[74] Chris Lattner. 2025. CIRCT: Circuit IR Compilers and Tools. https://circt.llvm.org/.

[75] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana

Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain

Specific Computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE,

Seoul, Korea (South), 2–14. doi:10.1109/CGO51591.2021.9370308

[76] Yunsup Lee, Albert Ou, Colin Schmidt, Sagar Karandikar, Howard Mao, and Krste Asanović. 2015. The Hwacha

Microarchitecture Manual, Version 3.8.1. Technical Report UCB/EECS-2015-263. http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2015/EECS-2015-263.html

[77] Yunsup Lee, AndrewWaterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic,

Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Rimas Avizienis, Brian Richards, Jonathan Bachrach, David Patterson,

Elad Alon, Bora Nikolic, and Krste Asanovic. 2016. An Agile Approach to Building RISC-V Microprocessors. IEEE

Micro 36, 2 (March 2016), 8–20. doi:10.1109/MM.2016.11

[78] Harry Foster Lionel Bening. 2002. RTL Logic Simulation. Kluwer Academic Publishers, Boston, 69–101. doi:10.1007/0-

306-47631-2_5

[79] Andreas Lööw. 2025. The Simulation Semantics of Synthesisable Verilog. Proc. ACM Program. Lang. 9, OOPSLA1

(April 2025), 1295–1320. doi:10.1145/3720484

[80] Raffaele Meloni, H. Peter Hofstee, and Zaid Al-Ars. 2024. Tywaves: A Typed Waveform Viewer for Chisel. In 2024 IEEE

Nordic Circuits and Systems Conference (NorCAS). IEEE, Lund, Sweden, 1–6. doi:10.1109/NorCAS64408.2024.10752465

[81] AndersMøller andMichael I. Schwartzbach. 2018. Static ProgramAnalysis. 47–48 pages. http://cs.au.dk/~amoeller/spa/

Department of Computer Science, Aarhus University.

[82] AndersMøller andMichael I. Schwartzbach. 2018. Static ProgramAnalysis. 79–87 pages. http://cs.au.dk/~amoeller/spa/

Department of Computer Science, Aarhus University.

[83] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. 2016. PKCS #1: RSA Cryptography Specifications Version 2.2. Technical

Report RFC8017. RFC Editor. RFC8017 pages. doi:10.17487/RFC8017

[84] R Mukherjee. 2018. Precise abstract interpretation of hardware designs. PhD Thesis. University of Oxford.

[85] National Institute of Standards and Technology (US). 2023. Advanced Encryption Standard (AES). Technical Report

NIST FIPS 197-upd1. National Institute of Standards and Technology (U.S.), Washington, D.C. NIST FIPS 197–upd1

pages. doi:10.6028/NIST.FIPS.197-upd1

[86] M. H. A. Newman. 1942. On Theories with a Combinatorial Definition of "Equivalence". Annals of Mathematics 43, 2

(1942), 223–243. http://www.jstor.org/stable/1968867

[87] Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. In Correct System Design, Gerhard Goos,

Juris Hartmanis, Jan Van Leeuwen, Ernst-Rüdiger Olderog, and Bernhard Steffen (Eds.). Vol. 1710. Springer Berlin

Heidelberg, Berlin, Heidelberg, 114–136. doi:10.1007/3-540-48092-7_6 Series Title: Lecture Notes in Computer

Science.

[88] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. 2018. Btor2 , BtorMC and Boolector 3.0. In Computer

Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Vol. 10981. Springer International Publishing,

Cham, 587–595. doi:10.1007/978-3-319-96145-3_32 Series Title: Lecture Notes in Computer Science.

[89] Rachit Nigam, Pedro Henrique Azevedo De Amorim, and Adrian Sampson. 2023. Modular Hardware Design with

Timeline Types. Proc. ACM Program. Lang. 7, PLDI (June 2023), 343–367. doi:10.1145/3591234

[90] Rachit Nigam, Ethan Gabizon, Edmund Lam, and Adrian Sampson. 2024. Correct and Compositional Hardware

Generators. doi:10.48550/ARXIV.2401.02570 Version Number: 1.

[91] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2021. An Empirical Study on Type Annotations: Accuracy,

Speed, and Suggestion Effectiveness. ACM Trans. Softw. Eng. Methodol. 30, 2 (April 2021), 1–29. doi:10.1145/3439775

[92] John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and Lambros Karkazis. 2018. Assessing the type annotation

burden. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM,

Montpellier France, 190–201. doi:10.1145/3238147.3238173

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3563946
https://doi.org/10.1145/2678015.2678016
https://doi.org/10.4230/LIPIcs.SNAPL.2019.9
https://circt.llvm.org/
https://doi.org/10.1109/CGO51591.2021.9370308
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1007/0-306-47631-2_5
https://doi.org/10.1007/0-306-47631-2_5
https://doi.org/10.1145/3720484
https://doi.org/10.1109/NorCAS64408.2024.10752465
http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/
https://doi.org/10.17487/RFC8017
https://doi.org/10.6028/NIST.FIPS.197-upd1
http://www.jstor.org/stable/1968867
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1145/3591234
https://doi.org/10.48550/ARXIV.2401.02570
https://doi.org/10.1145/3439775
https://doi.org/10.1145/3238147.3238173

18:32 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

[93] Yan Pi, Hongji Zou, Tun Li, Wanxia Qu, and Hai Wan. 2023. ESFO: Equality Saturation for FIRRTL Optimization. In

Proceedings of the Great Lakes Symposium on VLSI 2023. ACM, Knoxville TNUSA, 581–586. doi:10.1145/3583781.3590239

[94] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pombrio, and Shriram Krishnamurthi. 2012. A

Tested Semantics for Getters, Setters, and Eval in JavaScript. In Proceedings of the 8th Symposium on Dynamic

Languages (Tucson, Arizona, USA) (DLS ’12). Association for Computing Machinery, New York, NY, USA, 1–16.

doi:10.1145/2384577.2384579

[95] Michael Popoloski. 2025. Slang: SystemVerilog Language Services. https://github.com/MikePopoloski/slang.

[96] Md Imtiaz Rashid and B. Carrion Schaefer. 2024. VeriPy: A Python-Powered Framework for Parsing Verilog HDL and

High-Level Behavioral Analysis of Hardware. In 2024 IEEE 17th Dallas Circuits and Systems Conference (DCAS). IEEE,

Richardson, TX, USA, 1–6. doi:10.1109/DCAS61159.2024.10539889

[97] Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann, Michael Eichberg, and Mira Mezini. 2020. TACAI: an

intermediate representation based on abstract interpretation. In Proceedings of the 9th ACM SIGPLAN International

Workshop on the State Of the Art in Program Analysis. ACM, London UK, 2–7. doi:10.1145/3394451.3397204

[98] Berkeley Architecture Research. 2023. IceNet: A library of Chisel designs related to networking. https://chipyard.

readthedocs.io/en/1.10.0/Generators/IceNet.html.

[99] Berkeley Architecture Research. 2023. RiscvMini: Simple RISC-V 3-stage Pipeline in Chisel. https://github.com/ucb-

bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802.

[100] Berkeley Architecture Research. 2023. Sodor Processor Collection: Educational Microarchitectures for Risc-V ISA.

https://github.com/ucb-bar/riscv-sodor/tree/sodor-old.

[101] Berkeley Architecture Research. 2025. ChiselTest: The batteries-included testing and formal verification library for

Chisel-based RTL designs. https://github.com/ucb-bar/chiseltest.

[102] Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. 2013. On design vulnerability analysis and trust

benchmarks development. In 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE, Asheville, NC,

USA, 471–474. doi:10.1109/ICCD.2013.6657085

[103] Martin Schoeberl. 2025. Digital Design with Chisel. Kindle Direct Publishing. https://github.com/schoeberl/chisel-book

[104] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and Mark Tehranipoor. 2017. Benchmarking

of Hardware Trojans and Maliciously Affected Circuits. J Hardw Syst Secur 1, 1 (March 2017), 85–102. doi:10.1007/

s41635-017-0001-6

[105] Shidong Shen, Yicheng Liu, Lijun Zhang, Fu Song, and ZhilinWu. 2025. Formal Verification of RISC-V Processor Chisel

Designs. In Dependable Software Engineering. Theories, Tools, and Applications, Timothy Bourke, Liqian Chen, and

Amir Goharshady (Eds.). Vol. 15469. Springer Nature Singapore, Singapore, 142–160. doi:10.1007/978-981-96-0602-3_8

Series Title: Lecture Notes in Computer Science.

[106] Wilson Snyder. 2025. Verilator. https://veripool.org/verilator.

[107] Synopsys, Inc. 2025. Spyglass Lint. https://www.synopsys.com/verification/static-and-formal-verification/spyglass/

spyglass-lint.html

[108] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware Design Processing Toolkit for Verilog HDL.

In Applied Reconfigurable Computing, Kentaro Sano, Dimitrios Soudris, Michael Hübner, and Pedro C. Diniz (Eds.).

Vol. 9040. Springer International Publishing, Cham, 451–460. doi:10.1007/978-3-319-16214-0_42 Series Title: Lecture

Notes in Computer Science.

[109] Tian Tan and Yue Li. 2023. Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good

Designs of Classics. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.

ACM, Seattle WA USA, 1093–1105. doi:10.1145/3597926.3598120

[110] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and David Patterson. 2010. A case for

FAME: FPGA architecture model execution. SIGARCH Comput. Archit. News 38, 3 (June 2010), 290–301. doi:10.1145/

1816038.1815999

[111] Alfred Tarski. 1955. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific J. Math. 5, 2 (June 1955),

285–309.

[112] Patrick Thomson. 2022. Static analysis. Commun. ACM 65, 1 (Jan. 2022), 50–54. doi:10.1145/3486592

[113] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware Description Languages: Applying Programming

Language Techniques to Improve Design Productivity. In 3rd Summit on Advances in Programming Languages (SNAPL

2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 136), Benjamin S. Lerner, Rastislav Bodík, and

Shriram Krishnamurthi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 7:1–7:21.

doi:10.4230/LIPIcs.SNAPL.2019.7 ISSN: 1868-8969.

[114] Sheng-Hong Wang, Hunter James Coffman, Kenneth Mayer, Sakshi Garg, and Jose Renau. 2023. A Multi-threaded

Fast Hardware Compiler for HDLs. In Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler

Construction. ACM, Montréal QC Canada, 25–36. doi:10.1145/3578360.3580254

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3583781.3590239
https://doi.org/10.1145/2384577.2384579
https://github.com/MikePopoloski/slang
https://doi.org/10.1109/DCAS61159.2024.10539889
https://doi.org/10.1145/3394451.3397204
https://chipyard.readthedocs.io/en/1.10.0/Generators/IceNet.html
https://chipyard.readthedocs.io/en/1.10.0/Generators/IceNet.html
https://github.com/ucb-bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802
https://github.com/ucb-bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802
https://github.com/ucb-bar/riscv-sodor/tree/sodor-old
https://github.com/ucb-bar/chiseltest
https://doi.org/10.1109/ICCD.2013.6657085
https://github.com/schoeberl/chisel-book
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/978-981-96-0602-3_8
https://veripool.org/verilator
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://doi.org/10.1007/978-3-319-16214-0_42
https://doi.org/10.1145/3597926.3598120
https://doi.org/10.1145/1816038.1815999
https://doi.org/10.1145/1816038.1815999
https://doi.org/10.1145/3486592
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://doi.org/10.1145/3578360.3580254

ChiSA: Static Analysis for Lightweight Chisel Verification 18:33

[115] Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. 2022. A Survey on Assertion-based Hardware

Verification. ACM Comput. Surv. 54, 11s (Jan. 2022), 1–33. doi:10.1145/3510578

[116] Remigiusz Wiśniewski, Arkadiusz Bukowiec, and MarekWegrzyn. 2001. Benefits of Hardware Accelerated Simulation.

(June 2001).

[117] Mufan Xiang, Yongjian Li, and Yongxin Zhao. 2023. ChiselFV: A Formal Verification Framework for Chisel. In 2023

Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Antwerp, Belgium, 1–6. doi:10.23919/

DATE56975.2023.10137221

[118] Mufan Xiang, Yongjian Li, and Yongxin Zhao. 2023. RVFC: RISC-V Formal in Chisel. In 2023 International Symposium

of Electronics Design Automation (ISEDA). IEEE, Nanjing, China, 162–167. doi:10.1109/ISEDA59274.2023.10218484

[119] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei

Lin, Tong Liu, Zhigang Liu, Jiazhan Tan, Huaqiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang

Zhang, Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dandan

Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun,

and Yungang Bao. 2022. Towards Developing High Performance RISC-V Processors Using Agile Methodology. In

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, Chicago, IL, USA, 1178–1199.

doi:10.1109/MICRO56248.2022.00080

[120] Jones Yeboah and Saheed Popoola. 2023. Efficacy of Static Analysis Tools for Software Defect Detection on Open-

Source Projects. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI).

IEEE, Las Vegas, NV, USA, 1588–1593. doi:10.1109/CSCI62032.2023.00262

[121] Shizhen Yu, Yifan Dong, Jiuyang Liu, Yong Li, Zhilin Wu, David N. Jansen, and Lijun Zhang. 2022. CHA: Supporting

SVA-Like Assertions in Formal Verification of Chisel Programs (Tool Paper). In Software Engineering and Formal

Methods, Bernd-Holger Schlingloff and Ming Chai (Eds.). Vol. 13550. Springer International Publishing, Cham, 324–331.

doi:10.1007/978-3-031-17108-6_20 Series Title: Lecture Notes in Computer Science.

[122] Bowen Zhang, Wei Chen, Hung-Chun Chiu, and Charles Zhang. 2024. Unveiling the Power of Intermediate Repre-

sentations for Static Analysis: A Survey. doi:10.48550/ARXIV.2405.12841 Version Number: 1.

[123] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A Hardware Design Language for Timing-

Sensitive Information-Flow Security. SIGPLAN Not. 50, 4 (May 2015), 503–516. doi:10.1145/2775054.2694372

[124] Jerry Zhao, Animesh Agrawal, Borivoje Nikolic, and Krste Asanovic. 2022. Constellation: An Open-Source SoC-

Capable NoC Generator. In 2022 15th IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc).

IEEE, Chicago, IL, USA, 1–7. doi:10.1109/NoCArc57472.2022.9911299

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3510578
https://doi.org/10.23919/DATE56975.2023.10137221
https://doi.org/10.23919/DATE56975.2023.10137221
https://doi.org/10.1109/ISEDA59274.2023.10218484
https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/CSCI62032.2023.00262
https://doi.org/10.1007/978-3-031-17108-6_20
https://doi.org/10.48550/ARXIV.2405.12841
https://doi.org/10.1145/2775054.2694372
https://doi.org/10.1109/NoCArc57472.2022.9911299

	Abstract
	1 Introduction
	2 C: The Core Calculus of ChAIR
	2.1 C Informal: Understanding the Essence of Chisel Circuits
	2.2 C Syntax: Circuit (Static) Structure
	2.3 C Semantics: Circuit (Dynamic) Behavior
	2.4 C Properties: Circuit Characteristics

	3 HVFA: Hardware Value Flow Analysis
	3.1 HVFA Problem Formulation
	3.2 Approximate Synchronous Register Behavior: Synchronous Flow Functions
	3.3 Synchronized Fixed-Point Solution for HVFA
	3.4 Soundness and Precision Discussion of HVFA
	3.5 HVFA Instances for Lightweight Chisel Verification

	4 ChiSA: A Proof of Concept
	5 Evaluation
	5.1 RQ1: Hardware Bug Detection — ChiSA vs. Bounded Model Checking
	5.2 RQ2: Hardware Security Analysis — ChiSA vs. Secure Type System

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

