ChiSA: Static Analysis for Lightweight Chisel Verification

_]lACAI CUI, QINLIN CHEN, and ZHONGSHENG ZHAN, Nanjing University, China
TIAN TAN* and YUE LI", Nanjing University, China

The growing demand for productivity in hardware development opens up new opportunities for applying
programming language (PL) techniques to hardware description languages (HDLs). Chisel, a leading agile
HDL, embraces this shift by leveraging modern PL features to enhance hardware design productivity. However,
verification for Chisel remains a major productivity bottleneck, requiring substantial time and manual effort. To
address this issue, we advocate the use of static analysis—a technique proven well-suited to agile development
workflows in software—for lightweight Chisel verification.

This work establishes a theoretical foundation for Chisel static analysis. At its core is A¢, a formal core
calculus of ChAIR (a Chisel-specific intermediate representation for analysis). Ac is the first formalism that
captures the essence of Chisel while being deliberately minimal to ease rigorous reasoning about static analysis
built on Ac. We prove key properties of Ac that reflect real hardware characteristics, which in turn offer a
form of retrospective validation for its design. On the basis of Ac, we define and formalize the hardware
value flow analysis (HVFA) problem, which underpins our static analyses for critical Chisel verification tasks,
including bug detection and security analysis. We then propose a synchronized fixed-point solution to the
HVFA problem, featuring hardware-specific treatment of the synchronous behavior of clock-driven hardware
registers—the essential feature of Chisel programs. We further prove key theorems establishing the guarantees
and limitations of our solution.

As a proof of concept, we develop ChiSA (30K+ LoC)—the first Chisel static analyzer that can analyze
intricate hardware value flows to enable lightweight analyses for critical Chisel verification tasks such as bug
detection and security analysis. To facilitate thorough evaluation of both ChiSA and future work, we provide
ChiSABench (11M+ LoC), a comprehensive benchmark for Chisel static analysis.

Our evaluation on ChiSABench demonstrates that ChiSA offers an effective and significantly more light-
weight approach for critical Chisel verification tasks, especially on large and complex real-world designs. For
example, ChiSA identified 69 violable developer-inserted assertions in large-scale Chisel designs (9.7M+ LoC)
in under 200 seconds—eight of which were recognized by developers and scheduled for future fixes—and
detected all 60 information-leak vulnerabilities in the well-known TrustHub benchmark (1.1M+ LoC) in just
one second—outperforming state-of-the-art Chisel approaches like ChiselTest’s bounded model checking and
ChiselFlow’s secure type system. These results underscore the high promise of static analysis for lightweight
Chisel verification. To encourage continued research and innovation, we will fully open-source ChiSA (30K+
LoC) and ChiSABench (11M+ LoC).

CCS Concepts: « Theory of computation — Program analysis; « Hardware — Hardware description
languages and compilation.

Additional Key Words and Phrases: Static Analysis, Hardware, Chisel

*Corresponding author.

Authors’ Contact Information: Jiacai Cui, jiacaicui@smail.nju.edu.cn; Qinlin Chen, ginlinchen@smail.nju.edu.cn; Zhong-
sheng Zhan, yahya_chan@smail.nju.edu.cn, State Key Laboratory for Novel Software Technology, Nanjing University,
China; Tian Tan, tiantan@nju.edu.cn; Yue Li, yueli@nju.edu.cn, State Key Laboratory for Novel Software Technology,
Nanjing University, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART18

https://doi.org/10.1145/3776660

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://orcid.org/0009-0001-4922-887X
https://orcid.org/0009-0006-5498-5927
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0009-3792-1237
https://orcid.org/0009-0009-1285-2298
https://orcid.org/0009-0001-4922-887X
https://orcid.org/0009-0006-5498-5927
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0004-7151-9608
https://orcid.org/0009-0009-3792-1237
https://orcid.org/0009-0009-1285-2298
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776660
https://www.acm.org/publications/policies/artifact-review-and-badging-current

18:2 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

ACM Reference Format:

Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2026. ChiSA: Static Analysis for Lightweight
Chisel Verification. Proc. ACM Program. Lang. 10, POPL, Article 18 (January 2026), 33 pages. https://doi.org/10.
1145/3776660

1 Introduction

Inherent inefficiencies in general-purpose processors are driving a shift toward domain-specific
architectures (DSAs), intensifying the need for more productive hardware development work-
flows [53, 54, 70]. This creates opportunities for programming language (PL) techniques to play
a critical role in hardware development [113]. To meet this demand, Chisel [17]—a leading agile
hardware description language (HDL)—leverages modern PL features to improve hardware design
productivity, and has seen successful adoption in both academia [22, 77, 119] and industry [8, 15].

While Chisel improves hardware design productivity, verification remains a major bottleneck,
typically requiring substantial time and manual effort. Hardware projects often spend over 70% of
development time on verification [51], employ more verification engineers than design engineers,
and even require designers to devote nearly half of their time to verification tasks [49].

Current approaches to Chisel verification largely inherit heavyweight methodologies from the
broader hardware community, which fall into three main categories, each with efficiency limitations:

(1) Simulation-based testing [19, 37, 41, 43, 44, 67, 68, 101] remains the predominant hardware
verification technique, but it is fundamentally constrained by the fact that simulation is slow—
orders of magnitude slower (103-10°x) than real-time hardware execution [45, 55, 78, 116].

(2) Formal verification techniques—including bounded model checking [42, 73, 117, 121], which
suffer from the well-known state explosion problem [30], and theorem-proving [46], which
require labor-intensive construction of formal proofs—are typically only applied to small-scale,
critical modules since they do not scale to million-line-scale designs, let alone support rapid
development cycles at that scale.

(3) Secure type systems [39, 40, 47] extend Chisel’s standard type system with security labels to
enforce security policies via type checking. However, their practical adoption is hindered by
the extensive manual annotation burden [91, 92], which grows proportionally with code size.

To address these limitations, we advocate for the use of (sophisticated) static analysis [112]—a
technique proven well-suited to agile development workflows [34], with established success in
software bug detection [120] and security analysis [29]—for lightweight Chisel verification.

Note that although Chisel currently relies on Verilog [1] as a backend to maintain compatibility
with commercial electronic design automation (EDA) toolchains, we intentionally base our work
natively on Chisel rather than on its generated, flattened, low-level Verilog. This choice preserves
high-level Chisel-specific information that is lost during standard translation to Verilog—such
as assertions expressing design intent, high-level memory abstractions amenable to specialized
treatment, and source locations essential for traceability. As further elaborated and discussed in
Section 6, retaining this information facilitates more effective static analysis that is better tailored
to Chisel. This Chisel-native approach also aligns with ongoing efforts in the Chisel community
to develop open-source EDA workflows that increasingly avoid reliance on Verilog, including
Chisel-native simulation [19, 68], waveform viewing [80], synthesis [24, 93, 114], and design space
exploration (DSE) [48].

In this work, we establish a theoretical foundation for Chisel static analysis. At its core is A¢, a
formal core calculus of ChAIR (a Chisel-specific intermediate representation for analysis). A¢ is
the first formalism that captures the essence of Chisel while being deliberately minimal to ease
rigorous reasoning about static analysis built on Ac. Below, we briefly introduce ChAIR and A¢,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3776660
https://doi.org/10.1145/3776660

ChiSA: Static Analysis for Lightweight Chisel Verification 18:3

then present the hardware value flow analysis (HVFA) problem defined atop A¢, which forms the
foundation of our analyses for Chisel verification tasks like bug detection and security analysis.

ChAIR. To ground both our theory and practice, we introduce ChAIR, an intermediate represen-
tation (IR) for analysis that offers a simple yet expressive abstraction of Chisel hardware designs.
In contrast to Firrtl [63]—the official Chisel compiler IR—and its associated CIRCT [74] dialects,
which adopt recursive IR structures based on abstract syntax trees (ASTs) or MLIR [75] operations
and are primarily designed for transformation and lowering tasks, ChAIR employs a flat, linear
three-address code (3AC) structure that prioritizes simplicity to ease the development of static
analyses [97]. To further enable efficient sparse analysis, ChAIR adopts static single assignment
(SSA) form [122], which also closely aligns with the structural essence of digital circuits, as discussed
in Section 2.2. Due to space limits, the full specification of ChAIR, which captures comprehensive
Chisel language features, is provided in the supplementary material accompanying this paper.

Ac. To support rigorous reasoning about static analyses for Chisel, we formalize a core calculus
for ChAIR, denoted A (Section 2). Unlike heavyweight formalisms developed for other HDLs such as
Verilog [25] and VHDL [60], which aim to comprehensively characterize full language specifications,
Ac is the first formalism that captures the essence of Chisel while being deliberately minimal—
making it well-suited for formal reasoning about static analysis [61, 71, 72, 94]. Since Chisel
specifically focuses on describing synchronous digital circuits [103], A¢ is tailored to minimally
capture the essence of such circuits. Among various aspects of Chisel that A¢ exposes, we highlight
the synchronous behavior of hardware registers—driven by clock ticks—as a key semantic distinction
from conventional software languages and a central concern for Chisel static analysis. Furthermore,
we prove key properties of A¢ that reflect physical realities of synchronous digital circuits, such as
the correspondence between combinational loops and circuit instability [33], which in turn offer a
form of retrospective validation for A¢’s design.

HVFA. On the basis of A¢, we define and formalize the HVFA problem (Section 3). Owing to A¢c’s
ability to capture the essence of Chisel, HVFA underpins our static analyses of critical Chisel verifi-
cation tasks—including bug detection and security analysis. HVFA draws inspiration from classical
data/value flow analysis in software [66], but incorporates hardware-specific customizations to
handle the synchronous semantics of clock-driven hardware registers (the essential feature of Chisel
programs) —a fundamental departure from conventional software behavior. In particular, we intro-
duce synchronous flow functions to approximate simultaneous register updates synchronized by
clock ticks, and define a synchronized fixed-point solution to statically over-approximate dynamic
synchronous circuit behavior. We formally characterize these hardware-specific customizations by
proving theorems that establish a theoretical foundation for HVFA’s guarantees and limitations.
The formal study of HVFA also illustrates how A¢ supports rigorous reasoning about Chisel static
analyses.

Proof of Concept. We developed ChiSA (30K+ LoC), the first Chisel static analyzer capable of
analyzing intricate hardware value flows to enable efficient yet sophisticated analyses for critical
Chisel verification tasks, such as bug detection and security analysis. Note that a significant portion
of ChiSA’s codebase is dedicated to constructing reusable infrastructure to support ongoing research
and the development of new Chisel static analyses. This infrastructure includes, but is not limited
to: (1) various HVFAs (a set of fundamental analyses for building value flows for hardware), (2)
ChAIR, along with a front-end that automatically translates Chisel code to ChAIR, (3) a rich set of
useful graph representations built on top of ChAIR, and (4) an analysis manager for orchestrating
multiple analyses and integrating new ones.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:4 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Evaluation. To support thorough evaluation for ChiSA, we provide ChiSABench (11M+ LoC),
a comprehensive Chisel static analysis benchmark suite spanning a broad range of language
features, design purposes, and code scales. To enhance ChiSABench’s out-of-the-box accessibility
and hands-on usability for future research, we invested considerable effort to pre-elaborate all
designs (hardware programs) in ChiSABench into standalone Firrtl [63] files, eliminating the need
for tedious environment setup or project-specific build steps, including managing multi-language
dependencies and resolving fragile toolchain version conflicts.

To investigate whether ChiSA provides an effective and more lightweight approach for critical
Chisel verification tasks—particularly for large and complex real-world Chisel designs—and to
assess its fundamental ability to analyze hardware value flows, we evaluate ChiSA’s representative
analyses on ChiSABench. The results are highly promising:

(1) Hardware Bug Detection (ChiSA vs. Bounded Model Checking). ChiSA’s static assertion analysis,
identified 69 violable embedded (developer-inserted) assertions—eight of which were recognized by
developers and scheduled for future fixes—across large-scale real-world Chisel designs (9.7M+ LoC)
in just 200 seconds, illustrating its effectiveness and lightweight nature. In contrast, the state-of-the-
art Chisel bounded model checking provided by ChiselTest [73] (referred to as ChiselTest-BMC)
failed to analyze any of these designs due to its limitations under real-world conditions. For
example, the most common failure occurred when encountering external hardware modules whose
definitions were inaccessible—a typical scenario in hardware development given the widespread use
of intellectual property (IP) cores. Unlike ChiselTest-BMC, which crashes in this scenario, ChiSA
handles such cases by supporting incomplete analysis via conservative approximation of external
components, underscoring the practical advantages of static analysis.

To further validate ChiSA’s lightweight nature, we additionally evaluated both tools on 877
small-scale, simpler Chisel designs (average 256 LoC), where statistics for ChiselTest-BMC could be
obtained. ChiSA completed the analysis of all these designs in just 3 seconds, a significant reduction
compared to the 2776 seconds required by ChiselTest-BMC.

(2) Hardware Security Analysis (ChiSA vs. Secure Type System). ChiSA’s taint analysis detected all
18 vulnerabilities in ChiselFlow’s [47] microbenchmark (655 LoC) using only 44 coarse-grained
source/sink annotations—a substantial reduction in annotation burden compared to the 228 fine-
grained type annotations needed by ChiselFlow, demonstrating more lightweight manual effort
while maintaining comparable effectiveness.

On the much larger TrustHub benchmark [102, 104] (1.15M LoC), ChiSA identified all 60
information-leak vulnerabilities using only 85 source/sink annotations guided by TrustHub’s
documentation. In contrast, ChiselFlow could not be applied to TrustHub due to the impracticality
of retrofitting a million-line-scale codebase with an annotation-intensive type system whose manual
effort grows proportionally with code size.

In summary, this work makes the following contributions:

o We present A¢, the formal core calculus of our Chisel-specific intermediate representation for
analysis. A¢ is the first formalism that captures the essence of Chisel while being deliberately
minimal to ease rigorous reasoning about static analysis built atop it.

e Based on A¢, we define and formalize the hardware value flow analysis (HVFA) problem, which
adapts classical data/value flow analysis from software to hardware by incorporating hardware-
specific treatment of synchronous semantics of clock-driven registers—the essential feature of
Chisel. We further prove key theorems establishing HVFA’s guarantees and limitations.

e As a proof of concept for HVFA, we developed ChiSA (30K+ LoC), the first Chisel static analyzer
capable of analyzing intricate hardware value flows to enable efficient yet sophisticated analyses
for critical Chisel verification tasks, such as bug detection and security analysis.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:5

e We provide ChiSABench (11M+ LoC), a comprehensive benchmark suite for evaluating Chisel
static analyses. Our evaluation demonstrates that ChiSA offers an effective and highly lightweight
solution for critical Chisel verification tasks, outperforming state-of-the-art Chisel techniques
(such as bounded model checking and secure type system) on large, complex, real-world designs.

e We will submit an artifact to reproduce all experimental results in the paper, and fully open-source
both ChiSA (30K+ LoC) and ChiSABench (11M+ LoC) to the community.

Although ChiSA is still in its early stages and under active development for additional client
analyses, we believe it demonstrates the potential of static analysis for lightweight hardware
verification. We hope this work contributes to future innovations in Chisel static analysis and
inspires broader applications of programming language techniques to hardware verification.

2 Ac: The Core Calculus of ChAIR

To support rigorous reasoning about static analyses for Chisel, we formalize a core calculus for
ChAIR, called A¢c. In contrast to prior formalisms for other hardware description languages (HDLs),
such as Verilog [25] and VHDL [60], which aim to comprehensively characterize full language
specifications and often become heavyweight, A¢ is the first formalism that captures the essence
of Chisel while being deliberately minimal. This makes it well-suited for formally defining and
reasoning about static analyses [61, 71, 72, 94], as we illustrate in Section 3.

Since Chisel specifically focuses on describing synchronous digital circuits [103]—with its idioms
and libraries assuming a single global clock domain by default—we accordingly concentrate our
discussion on synchronous circuits'. While A¢c targets a minimal core of Chisel to enable clear
and tractable formal reasoning, ChAIR itself supports comprehensive Chisel language features, as
detailed in our supplementary material.

To clarify the relationship among source-level Chisel, ChAIR, and A¢: (1) Source-level Chisel
designs can be comprehensively compiled into ChAIR through ChiSA’s frontend, a process we
have thoroughly validated on ChiSABench (11M+ LoC). (2) ChAIR, in turn, can be fully desugared
into A¢, with the only exceptional case being gated clocks [31], a rarely used case in Chisel—cross
all real-world projects in ChiSABench, we only observed gated clocks in roughly 1 out of every
1,000,000 lines. We deliberately exclude this rare case to keep Ac as clean and minimal as we can
without compromising its practical adequacy as a theoretical core calculus for ChAIR.

In this section, we begin with an example to informally introduce A¢ and highlight the essence
of Chisel, while also providing necessary hardware background (Section 2.1). We then formalize
the structural essence of circuits—digital components and their interconnections—via the syntax of
Ac (Section 2.2). Next, we formalize the behavioral essence—namely, reactivity and synchronicity—
through the operational semantics of A¢ (Section 2.3). Finally, in Section 2.4, we establish key
circuit properties in A¢ that reflect real-world physical characteristics, such as the correspondence
between combinational loops and circuit instability [33], which in turn offer a form of retrospective
validation for its design.

2.1 Ac Informal: Understanding the Essence of Chisel Circuits

This section provides an informal introduction to A¢ using the accumulator example in Figure 1 to
highlight the essence of Chisel circuits it captures, focusing on both the static structure and the
dynamic behavior of these circuits. Relevant hardware background is included as needed within
the section.

From a static structural perspective, a circuit consists of digital components and the connections
between them. In A¢, components are modeled using operators—y op z for arithmetic (e.g., adders)

1Unless otherwise noted, all circuits discussed in the formal sections (Section 2 and Section 3) are assumed to be synchronous.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:6 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

val out = RegInit(0) Lout <ty
> val prev = RegNext(out) ~ t =mux(rsttzts) in
t, =0 ty t out prev
3 when (en) {
t; = mux(en,t,,out)
! out := out + in 5ty = out + in /\ /\
5} o prev < out
(a) Chisel Code (b) Ac Representation (c) Schematic
Ac Reduction Rule ‘ External Stimulus ‘ Internal Connection ‘ in en rst out prev t t t3 14

C-EvaL — ty = out + in 0 0 0 0 0 0 0 0 0
C-EvaL — t3 = mux(en, t4, out) 0 0 0 0 0 0 0 0 0
C-EvaL — th =0 0 0 0 0 0 0 0 0 0
C-EvaL — t; = mux(rst, t2, t3) 0 0 0 0 0 0 0 0 0
S-POKE poke en 1 — 0 1 0 0 0 0 0 0 0
C-EvaL — t3 = mux(en, t4, out) 0 1 0 0 0 0 0 0 0
S-PoKE poke in 2 — 2 1 0 0 0 0 0 0 0
C-EvaL = ty = out + in 2 1 0 0 0 0 0 0 2
C-EvaL — t3 = mux(en, t4, out) 2 1 0 0 0 0 0 2 2
C-EvaL — ty = mux(rst, ty, t3) 2 1 0 0 0 2 0 2 2
S-Tick tick out <ty || prev < out | 2 1 0 2 0 2 0 2 2
C-EvaL = ty = out + in 2 1 0 2 0 2 0 2 4
C-EvaL — t3 = mux(en, ty, out) 2 1 0 2 0 2 0 4 4
C-EvaL — ty = mux(rst, ta, t3) 2 1 0 2 0 4 0 4 4
S-Tick tick out <ty || prev < out | 2 1 0 4 2 4 0 4 4
C-EvaL — ty = out + in 2 1 0 4 2 4 0 4 6
C-EvaL — t3 = mux(en, ty, out) 2 1 0 4 2 4 0 6 6
C-EvaL — t; = mux(rst, tz, t3) 2 1 0 4 2 6 0 6 6

(d) An execution trace of the accumulator, based on the reduction rules from Definition 2.14 and formally
described in Section 2.3. The external stimulus sequence is poke en 1; poke in 2; tick; tick, with the relevant
stimulus for each step shown in the “External Stimulus” column. The “Internal Connection” column indicates
the currently active internal connection during each step. The remaining columns display variable values after
each step; values changed in the current step are highlighted in red, while values touched by the reduced
connection but unchanged are shown in green.

Fig. 1. An informal introductory example of Ac. The Chisel code, A¢ representation, and schematic describe
the same accumulator design, where out accumulates in when en is high, and resets to 0 when rst is high;
prev records the previous out. Unfocused Chisel boilerplate (e.g., module declaration, literal type conversion)
is omitted for clarity.

or logical (e.g., shifters) units and mux(w, y, z) for multiplexers—as well as constants (1 for voltage
high/power, 0 for voltage low/ground). Connections are expressed using assignment statements:

x = .-+ for wire connections, and x & - - - for register connections. For example:
y

. models an adder :®—> x that reactively updates x with the sum of y and z.
z w

. y . . .
o | x = mux(w,y, z) | models a multiplexer x that reactively sets x to y if w is nonzero,
z

or to z otherwise.

. models a register y x that synchronously updates x with the value of y on each

global clock tick, in parallel with all other registers.

The correspondence between Figure 1b and Figure 1c illustrates how A¢ uses these simple, compos-
able primitives to describe a real functional hardware design. Comparing Figure 1a and Figure 1b,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:7

we see that high-level Chisel constructs can be desugared into A¢ to explicitly expose structural
details. For example, the RegInit method encapsulates reset logic; the when statement desugars to
a multiplexer.

From a dynamic behavior perspective, circuit execution manifests as voltage changes at each
circuit location in response to external stimuli. A¢c provides two primitives for external stimuli,
corresponding to the two types of external stimuli supported by Chisel’s official simulator [14]:

o | poke x n |sets the value of input variable x to n, modeling physical actions like toggling a switch.

e | tick |advances the global clock, triggering synchronous updates for all registers.

Figure 1d illustrates how the accumulator in Figure 1b behaves under the stimulus sequence
poke en 1;poke in 2; tick; tick, assuming all variables are zero by default, consistent with the
default behavior of Chisel’s simulator [14]. Initially, wire connections are active even before
any external stimulus is applied, reflecting the physical reality that combinational components
respond instantaneously when the circuit is powered up. Then, the execution trace highlights two
fundamental principles of circuit behavior:

(1) Reactivity: Wire connections (e.g., t; = out + in) propagate changes reactively—any update to a
right-hand side (RHS) expression is immediately reflected in the left-hand side (LHS) variable.

(2) Synchronicity: Register connections (e.g., out < t; || prev < out) are updated synchronously
on each clock tick. Here, we use the symbol || to combine register connections, indicating that
the combined register connections are updated in synchrony.

As illustrated in Figure 1c, each variable in A¢c corresponds to a distinct location in the circuit. Thus,
value changes of a variable represent voltage changes at a physical location in the design—capturing
the essence of circuit behavior from a programming language perspective.

2.2 ¢ Syntax: Circuit (Static) Structure

The formal syntax of A¢ is intuitive in light of the introductory example in Section 2.1.

Definition 2.1 (A¢c Syntax for Circuit Design). A Ac circuit C is defined as:

C € Circuit := P (Item) 1 €ltem := x=n
op €Op := {(operators)} | x=yopz
w,X,y,z € Var := {(symbols)} | x =mux(w,y,z)
n € Value = Z | x<=y

As explained in Section 2.1, items ¢ capture the essential structure of circuits: components
and their connections. Expressions on the right-hand side of x = - - - model circuit components.
Assignments of the form x = - - - representing wire connections and x < - - - representing register
connections. We have aimed to keep A¢ as minimal as possible; the current version reflects our
best-effort design.

We choose Value = Z (i.e., the set of mathematical integers) purely for ease of understanding
and presentation in this paper. This simplification does not impact the generality of our formal-
ization, discussion, or proof sketches. A more rigorous and detailed treatment is provided in the
supplementary material.

We now introduce several auxiliary notations. Throughout, we use *

3

:=" to denote “is defined as”.
Definition 2.2 (Def & Use Selector). Def : Iltem — Var and Use : Item — % (Var) are defined as:

Def(x =n) :=x Def(x =y opz) :=x Def(x = mux(w,y,z)) :=x Def(x = y) :=x

Use(x =n) :=0 Use(x =y op z) := {y,z} Use(x =mux(w,y,2)) :={w,y,z} Use(x =y):={y}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:8 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Definition 2.3 (Wire & Register Connection). For a circuit C, C- := {_ = _ € C} denotes its wire
connections and Ce := {_ & _ € C} denotes its register connections, where _ is a wildcard.

Definition 2.4 (Input Variable). A variable x is an input of a circuit C if and only if it is used but
not defined in the circuit. Formally, x € Input, iff. 31 € C. x € Use(:) A =(31 € C. Def (1) = x)
where Input- denotes the set of all input variables of circuit C.

As introduced in Section 2.1, only input variables can be externally poked.

Definition 2.5 (Ac Syntax for External Stimuli). The external stimuli (a sequence of external
stimulus) S of a circuit C is defined as S € Stimulusc := (poke x n | tick)* where x € Input,. .

Since each physical location in a circuit should only be driven by at most one component—an
invariant also enforced in Chisel—A¢ naturally adheres to the single static assignment (SSA) form.

Ax10M 2.1 (SINGLE DRIVER). Ac is SSA: VC € Circuit.Viy, 1, € C.Def(11) = Def(1y) = 11 =15 .

{ t = 0] [t3 = mux(en, tq, out)]

ty = mux(rst, ta, t3)

To facilitate the development of static analysis algorithms,
we define a value flow graph (VFG) representation of the circuit
structure.

Definition 2.6 (Value Flow Graph for Ac Hardware Design).
The value flow graph of a circuit C is defined as G¢ = (C, E) ,
where E = {{11, 1) € CXC | Def(11) € Use(13)} . We define the
predecessor and successor selectors as Pred (1) := {// | (//,1) €
E} and Succ(y) :={/ | (1,//) € E}.

Figure 2 shows the VFG for the accumulator in Figure 1b,

which serves as an abstract static-analysis-friendly view of the

circuit schematic in Figure 1c. Register connections—whose ~Fig. 2. Value ﬂo“{ gréph of the intro-
values update synchronously on each clock tick—are depicted ~ductory example in Figure 1.
with double-line rectangles to distinguish them from reactive wire connections.

2.3 Ac Semantics: Circuit (Dynamic) Behavior

This section formalizes the operational behavior of circuits in A¢, highlighting two core behavioral
features of hardware: reactivity and synchronicity.
We begin by defining the evaluation of expressions within an evaluation environment.

Definition 2.7 (Environment). An environment E : Var — Value maps variables to values. The
domain of environments, representing the set of all possible environments, is denoted by Env.

Definition 2.8 (Expression). An expression e is any right-hand side appearing in an item; that is:
e:=n|yopz|mux(w,y,z) |y

Definition 2.9 (Evaluation). [e] g, defined case by case as follows, denotes the value of expression
e evaluated in environment E:

E(y), ifE(w) #0

E(z), if E(w) =0 [yle = E(y)

[nle:=n [yopzle:=E(y) opE(z) [mux(w.y.2)]g = {

Items are the core elements of A¢ that govern a circuit’s dynamic behavior in response to changes
in the environment. Wire connections make the circuit reactive: whenever the value of the RHS
expression of a wire connection changes, the LHS variable is updated immediately. The following
activation function (Definition 2.10) specifies, for any change in the environment, which set of wire

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:9

connections should update their LHS values. Register connections make the circuit synchronous:
all left-hand sides of register connections are updated simultaneously at each clock tick. The
synchronization function (Definition 2.13) describes how the environment is updated on a clock
tick. These two utility functions are central to the operational semantics of Ac.

Definition 2.10 (Activation Function). Given a circuit C, its activation function A¢ : EnvXEnv —
P(C-) is defined as

Ac(E,E") := {1 € C- | 3x € Use(1).E'(x) # E(x)}
It computes the set of wire connections activated by an environment change from E to E’.

Definition 2.11 (Atomic Effect). The effect of an item ! on the environment is a function [[¢] :
Env — Env, defined as [x(=|<)e](E) := E[x — [e]], where (=|<) denotes either = or <.

Definition 2.12 (Synchronous Effect). For a set of items I = {11, ..., 1,}, where each i; has the form
x;(=|<)e;, we define their synchronous effect [I] : Env — Env as

[IN(E) :==E[x1 — el --->xn — [en]E]

In the following discussion, for convenience, we often write [I] in decompositional form as
[l ... |l tn] to emphasize its synchronous nature.

Definition 2.13 (Synchronization Function). The synchronization function of a circuit C is [C] :
Env — Env (an instance of Definition 2.12). It represents the effect that a clock tick has on the
environment.

We now define the full operational semantics of A¢, orchestrating the above definitions into a
simple and unified circuit execution model.

Definition 2.14 (Operational Semantics of Ac). The semantics of a circuit C is given as a reduction
relation over configurations Config.. := Stimulusc X Env X £ (C-).

A configuration (S, E,I) € Config consists of: (1) S, the remaining external stimulus sequence;
(2) E, the current environment; (3) I, the set of pending internal wire connections to take effect.

We write C + (S, E,I) »» (S, E’, I') to denote a one-step reduction. The reduction relation C F~»
is defined as follows, where ¢ is the initial configuration under external stimulus S.

S-POKE S-Tick
E' =[x =n](E) E' =[C<](E)
C+ (poke x n;S,E, Q) ~> (S,E’, Ac(E,E")) C+ (tick;S,E,0) ~ (S,E', Ac(E,E))
C-EvaL
1€l E' =[](E) co = (S0, Erand, C=), where E;ang maps each
Cr{(S,EI) s (S,E,(I-{1})UAcEE)) variable to a random value

Intuitively, each reduction step corresponds to either an external stimulus—such as pokes (S-PoKE)
and clock ticks (S-Tick)—or an internal circuit update (C-EvAr). The rules ensure the following:
register updates are synchronized with clock ticks (S-Tick); input changes are applied through
pokes (S-PokE); and wire-driven updates propagate reactively (C-EvaL). Together, these rules define
the dynamic behavior of a synchronous hardware design under external stimuli. The execution
trace in Figure 1d corresponds to a sequence of such reduction steps beginning from an initial
configuration (poke en 1;poke in 2;tick; tick,{_ + 0},{t; = 0}), with each row in the table
representing a single reduction step and listing the rule applied in the first column.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:10 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

The reader may notice that the reduction steps can be infinite, as the size of I in the configu-
ration may never decrease. We will soon explain the physical meaning of this phenomenon and
demonstrate how it justifies the design of A¢ in Section 2.4.

We set the initial configuration ¢y to (So, Erand, C=). Here, Sy represents the initial sequence
of external stimuli in its entirety. The initial environment, E,,4, assigns random values to all
variables, reflecting the physical reality that initial voltages at circuit locations are unpredictable.
Wire connections, denoted as C-, are included in the initial configuration ¢y, capturing the fact that
combinational components respond instantaneously once the circuit is powered up.

2.4 Ac Properties: Circuit Characteristics

In this section, we formally establish several key properties of Ac. These properties are chosen to
demonstrate that A¢c accurately models the characteristic behaviors of real hardware circuits. Our
aim is to justify the design of A¢ and to show that it can effectively support the study of Chisel
circuits using programming language techniques.

The theorems discussed in this section concern the reduction sequences of A¢ configurations. As
noted in Section 2.3, where we defined the reduction rules of A¢, the reader may observe that the
reduction steps can be infinite, even when the initial configuration contains only a finite sequence
of external stimuli. This is because the size of I in the configuration does not necessarily decrease
under all reduction rules. In particular, rule C-EvAL removes ¢ from I but simultaneously merges a
new set A.(E, E’) into it. At first glance, this may seem like a flaw in the design of Ac. However,
this behavior precisely models a specific phenomenon in circuits: oscillation, where the voltage
levels on wires continue to change indefinitely, even after external stimuli have ceased. Theorem 2.1
expresses this issue both in the language of Ac and in its corresponding physical interpretation.

THEOREM 2.1. A circuit could oscillate even if only a finite sequence of external stimuli is applied:

3C € Circuit.3c € Config..3an infinite reduction sequence from c.

Proor SKETCH. We prove by constructing such a circuit: x = y+ 1, y = x + 1. This circuit exhibits
an infinite reduction sequence:

(poke x L{_+— 0}, 0) w (e,{x > Ly 0}, {y =x+1}) w (e {x— Ly 2}, {x =y +1})
w (e, {x 3y 2L{y=x+1}) w(e{x— 3y 4}, {x=y+1}) w ... O

Moreover, Intel’s design guidelines [33] explicitly recommend avoiding such oscillations when-
ever possible. This raises an important question: how can we formulate a condition on A¢ programs
that guarantees the absence of infinite reduction sequences? Theorem 2.2 shows that a circuit
whose value flow graph contains no cycles composed entirely of wire connections cannot have an
infinite reduction sequence. These cycles correspond exactly to the so-called “combinational loops”
in hardware engineering, which should be avoided according to best practices.

Definition 2.15 (Combinational Loop). A combinational loop in circuit C is a cycle composed
entirely of wire connections in its value flow graph Gc¢.

THEOREM 2.2. A circuit without a combinational loop cannot oscillate:
IfC contains no combinational loop, then A infinite reduction sequence from any ¢ € Config..

Proor SKETcH. Since C has no combinational loop, the subgraph of G¢ induced by C—-—denoted
Gc[C=]—is a directed acyclic graph (DAG). Let m = |C=| and define a reverse topological ranking
r: C= — {1,...,m} such that r(:) = i implies that 1 is the i-th largest node in the topological
ordering of G¢[C=].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:11

Now define a potential function ¢ € Config. — N™* as ¢((S,E,I)) = (|S|,s1, .. .,Sm), where
the s;’s are the ranks of the elements of I, sorted in descending order and padded with zeros to
length m. The lexicographic order over N™*! is a well-order, and there exists no infinite strictly
decreasing sequence in a well-ordered set. Therefore, to prove the absence of infinite reduction
sequences, it suffices to show that C + ¢ ~» ¢’ = ¢(c) > ¢(c’).

The S-Poke and S-Tick rules trivially decrease ¢ due to |S| decreasing. For the non-trivial case
C-EvaL: suppose C + (S, E,I) ~» (S,E’, I’y where E' = [+](E) and I’ = (I — {1}) U Ac(E, E’). Since
Ac(E,E’) € Succ(1) N C= (by Definition 2.6 and Definition 2.10) and ¢” € Succ(r) = r(i') < r(1)
(by definition of r), all newly added elements in I’ are ranked strictly lower than 1. Hence ¢(c’)
must be lexicographically smaller than ¢(c), completing the proof. O

To conclude the discussion, we present one more theorem (Theorem 2.3), which can be interpreted
as stating that a circuit without combinational loops has a uniquely determined steady state for
a given sequence of external stimuli, aligning with our understanding of physical circuits. This
further justifies the design of A¢ and its semantics.

THEOREM 2.3. The steady-state reached by a circuit without combinational loops is uniquely
determined:

C has no combinational loopAC + (S, E,C=) " {€,E1,0) AC + (S,E,C=) »" {¢,E;,0) = E; = E,.

Proor SKETcH. In the light of Theorem 2.2 and Newman’s Lemma [86], it is sufficient to prove
the following proposition: if C + (S, E,C=) ~* (S, Em,Im) A C F (S Emy Lm) ~» (S1,E1, 1) A
C F (Sm, Em, Im) ~» (Sa, Ez, I), there is a configuration (S’, E’,I’) such that C + (S, Eq, 1) ~»*
(S E"\ I') NCF (S5, Ep, Ip) ~* (S, E", I').

To prove this, it is necessary to analyze the reduction rules. Among all reduction rules, only
C-EvaL introduces nondeterminism in subsequent reductions, as it allows pending wire connections
to be consumed in an arbitrary order. Therefore, to prove that the final environment reduced from a
given configuration is uniquely determined, it suffices to show that the nondeterministic evaluation
order of C-EvaAL does not affect the determinism of its resulting environment. Although the result
appears intuitive, its rigorous proof is nontrivial and is thus provided in the supplementary material
due to space limitations. O

3 HVFA: Hardware Value Flow Analysis

To demonstrate how Ac facilitates rigorous reasoning about Chisel static analyses, we define and
formally study the hardware value flow analysis (HVFA) problem based on Ac. Leveraging Ac’s
ability to capture the essence of Chisel, HVFA enables our lightweight analyses for critical Chisel
verification tasks, as illustrated in our evaluation (Section 5).

HVFA draws inspiration from classical data/value flow analysis [66] in the software domain,
but incorporates hardware-specific customizations: (1) we introduce synchronous flow functions
(Definition 3.6) to approximate the synchronous behavior of clock-driven hardware registers; and
(2) we present the synchronized fixed-point solution (Definition 3.11) to derive sound value flow
information (e.g., constants, intervals, taints) at each circuit location (i.e., each variable in the
hardware design).

This section first formulates the HVFA problem in Section 3.1. Section 3.2 explains how synchro-
nous flow functions are used to approximate the behavior of clock-driven hardware registers, a
key hardware-specific distinction from classic data/value flow analysis for software. In Section 3.3,
we define the synchronized fixed-point solution and present an intuitive algorithm for computing
it. Section 3.4 proves theorems about the conditions that guarantee the soundness and factors

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:12 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

that affect precision. Finally, Section 3.5 introduces representative application-specific instances of
HVFA that support our hardware bug detection and security analysis for Chisel designs.

3.1 HVFA Problem Formulation

We formalize the HVFA problem by specifying its input, the form of its output, and the correctness
property the output must satisfy.

Input. The input to an HVFA problem includes a circuit C € Circuit, a lattice (L,) encoding
application-specific knowledge (e.g., constants, intervals, taints), and a description § : Input, — L
about the external stimulus—hereafter referred to as stimulus description.

Output. The output of an HVFA is a store ¢ € Store := Var — L, which assigns to each
variable—representing a circuit location as illustrated in Figure 1c—a value from the input lattice.

Correctness. The output store ¢ is deemed correct if it soundly over-approximates all possible
runtime configurations that may arise from any execution of the circuit under external stimuli
consistent with the input description &, as formalized in Definition 3.4.

Definition 3.1 (Abstraction Function). We use an abstraction function « : Value — L to represent
the relationship between static abstractions and dynamic values. For brevity without harming
clarity, we simply overload « by defining « : Env — Store as a(E) := {x + a(n) | E(x) = n} and
a : Config — Store as a({_, E, _)) := a(E).

Definition 3.2 (Stimulus-Description Consistency). A stimulus S € Stimulus is consistent with a
description § : Input. — L if Vpoke x n € S.a(n) C §(x).

Definition 3.3 (Store Precision Ordering). For o1, 0, € Store, we say o; is more precise than o,
denoted as 01 C 0, if Vx.01(x) C 02(x) .

Definition 3.4 (Soundness). A store o is sound if for any dynamic execution trace C + ¢y ~»
¢y ... starting from ¢y (Definition 2.14) where Sy is consistent with the stimulus description §
(Definition 3.2), we have Vi > 0.a(c;) C o.

Discussion About Stimulus Description. While the soundness property of a concrete HVFA result
is defined over external stimuli consistent with the input stimulus description 6, the general HVFA
formulation itself is not stimulus-specific. For instance, one can define a trivial stimulus description
§ = {_+ T}, which is naturally consistent with all possible external stimuli, since the corresponding
consistency condition Ypoke x n € S.a(n) C T (Definition 3.2) is trivially satisfied. In this case,
the soundness property would quantify over all possible external stimuli without imposing any
additional constraints from the stimulus description §.

The purpose of including the stimulus description ¢ is to allow flexibility in encoding known
constraints on external stimuli to improve precision. For example, if we know in advance that for a
specific x, Vpoke x n € S.a(n) C [, where [€ L is non-trivial (i.e.,] C T), we can specify §(x) =1
instead of the trivial §(x) = T. This enables the analysis to incorporate non-trivial prior knowledge,
thus enhancing precision.

3.2 Approximate Synchronous Register Behavior: Synchronous Flow Functions

Inspired by classical data/value flow analysis, we use flow functions f[[_]] : Store — Store
to approximate the dynamic circuit behavior [_] : Env — Env formalized in Section 2.3. In
particular, we define atomic flow functions f[[¢]] (Definition 3.5) to approximate atomic effects
[:] (Definition 2.11), and synchronous flow functions f[¢ || 12]] (Definition 3.6) to approximate
synchronous effects [[11 || 12]] (Definition 2.12). This section primarily focuses on synchronous flow

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:13

functions—a hardware-specific customization used in Section 3.3 to approximate the dynamic
behavior of clock-driven hardware registers.

3.2.1 Atomic Flow Functions.

Definition 3.5 (Atomic Flow Function). The atomic flow function of a single item : is denoted
fl] : Store — Store and defined as f[x(=|<)e] (o) := o[x + [e]s], where [[e] , € L represents
the lattice value of expression e evaluated under store o.

Here, the evaluation strategy [[e]]» in each HVFA instance is problem-specific and defined by its
developer, as we will see in Example 3.1, Example 3.2, and Section 3.5.

3.2.2 Synchronous Flow Functions.

Definition 3.6 (Synchronous Flow Function). Let I = {1, ...,1,} where each item ; has the form
x;(=|<)e;, their synchronous flow function f[[I]](o) : Store — Store is defined as

flI (o) =clx1 = [eillos---sxn = [en]sl-
In the following discussion, for convenience, we often write f[[I] in decompositional form as
flull --. |l tn] to emphasize its synchronous nature.

Below we establish that monotonicity, soundness, and precision ordering are preserved under
synchronous composition (Lemmas 3.1, 3.2, and 3.3). Thus, to verify these properties for a syn-
chronous flow function f[i; || ... || tn], it suffices to verify them for each atomic flow function

fluls---, flt] individually.

Definition 3.7 (Flow Monotonicity). A flow function f : Store — Store is monotonic if Yo; T
02.f(01) E f(02) .

LEMMA 3.1 (MoNoTONICITY PRESERVATION). If f[[11] and f[i2]] are monotonic, then sois f[[11 || t2].

Proor SKETCH. Let 1y be x1(=|<)ey, 12 be x2(=|<)e,. Suppose a1 C 0,. Monotonicity of f]]
implies [e;]|5, € [[e1]s,- Similarly, [e2]ls, T [e2]lo,- Thus f[u || 2] (o1) = o1[x1 = [le1] 6y, x2 —
le2llo,] € o2lx1 = [er]lo, x2 = [e2]lo,] = flLa 1 2]l (02). a]

Definition 3.8 (Flow Soundness). An atomic flow function f|[¢] issound if a(E) C o = a([[:](E)) C
fl:](0); a synchronous flow function f|I] is sound if (E) C o = a([I](E)) C f[I](0).

Definition 3.8 formalizes the notion that a flow function f[[_] statically over-approximates the
dynamic behavior [[_]. Intuitively, if f][¢] is sound, then whenever the store o over-approximates
an environment E, that is, «(E) C o, the static output f[:]](c) must still over-approximate the

dynamic result [(] (E), that is, a([[:] (E)) T f]:] ().
LEMMA 3.2 (SOUNDNESS PRESERVATION). If f[[11] and f[12]] are sound, then so is] 11 || 2]

PrROOF SKETCH. Let 1; be x1(=|<)ey, 12 be x2(=|<)e,. Suppose a(E) T o. Soundness of
implies a([le1]lg) C [e1]o- Similarly, a([e2]lg) T [[e2]lo- Hence, a([u || 2] (E)) = a(E)[x; +—
a([eillg). x2 = a([ezp)] € olx1 = [lei]lo, x2 = [ezllo] = fua Il 2] (o). o

To facilitate unified reasoning about different suites of atomic and synchronous flow functions,
we introduce the notion of a flow function family.

Definition 3.9 (Flow Function Family). We write f; to denote the family of flow functions f;[_]
(either atomic or synchronous) derived from a common flow evaluation strategy [_]|¢. We say that
a flow function family f; has a property (e.g., monotonicity, soundness, precision ordering) if all its

members share that property. For simplicity, we omit the strategy subscript and superscript { in
general discussions.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:14 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Example 3.1 (A Template Path-Insensitive Flow Function Family). A template path-insensitive flow
function family f; typically follows this evaluation strategy, where path condition w of mux(w, y, z)
is ignored:

[nl% = ax(n) [y opz]|5 = o(y) opx 0(2) [mux(w,y,2)[|7 = o(y) Ur o(2) [y]l5 =o(y)

Here a,, op,,U, are customizable for different application purposes. This example defines a
standard path-insensitive over-approximation for hardware multiplexers (i.e. mux(w, y, z)).

Definition 3.10 (Flow Precision Ordering). An atomic flow function fi[[:] is more precise than
fllt]], written as A][:] € f£[], if Vo.fil :] (o) E f£2[:] (o). Likewise, for synchronous flow function
Al € £l i Ve il (o) € £l (o).

Definition 3.10 formalizes the precision ordering between flow functions: one function is more
precise if it yields more informative (i.e., smaller) over-approximations than the other.

LEMMA 3.3 (PRECISION ORDERING PRESERVATION). If fi[(]] T £[t] and fi[V] € f£/]. then

Sillelivl € Ll7T

PROOF SKETCH. Let 1 = x(=|<)e, ' = x’(=|<)e’. For any o, from fi[[:] T f£[[:] we get [e]] C
[e]?. Similarly, [e']} € [[e’]3. Thus, A:]V](0) = o[x — [e]l.x" — [¢]L] C o[x —
[el5.x" = [e’15] = £ll: 11/ 1(0)- O

The following example illustrates how the above definitions work together in practice.

Example 3.2 (Zero Analysis Flow Function Family). Zero analysis tracks whether a circuit location
holds the value zero, which can be used to detect simple divide-by-zero bugs. It is defined as follows:
T
2N
(Lz,Cz) = Z& }N 0z(x) =T az(n) =

1

Z, ifn=0 lyopzll? =T
N, if n# 0 (Other cases inherit from Example 3.1)

Here, we conservatively approximate all binary operations as T for simplicity. This flow function
family remains atomically monotonic and sound by definition, and Lemmas 3.1 and 3.2 guarantee
that synchronous compositions inherit these properties. More precise flow function families are
also possible, and their relative precision can be easily compared with the help of Lemma 3.3.

3.3 Synchronized Fixed-Point Solution for HVFA
In ChiSA, executing an HVFA amounts to computing the least synchronized fixed-point solution
(Definition 3.12). Its properties will be discussed in Section 3.4. This section focuses on its calculation.

Definition 3.11 (Synchronized Fixed-Point Solution). Given a circuit C, a lattice (L, C), a stimulus
description ¢ and a flow function family f, the synchronized fixed-point (SFP) solution is

SFPJC;‘S := {0 € Store | (Vx € Input.o(x) =8(x)) A (Vi € C-.f[t](0) =0) A f[C<] (o) = (0)}.

Here, f[[C<]—an instance of Definition 3.6—over-approximates [[C< || (Definition 2.13) used in
the S-Tick rule of the A¢ semantics, which defines the synchronous register updates triggered by
clock ticks (Definition 2.14). The soundness of this approximation will be established in Theorem 3.5.

Definition 3.12 (Least SEP Solution). LSFPJC;‘S ={ce SFP?‘S | Vo' € SFPJC;‘S oCo').

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:15

Algorithm 1 presents an intuitive procedure for com- Algorithm 1 Synchronized-Worklist Algorithm

. (o] . o
puting LSFP P It maintains two worklists: WL_ for Input: an HVFA problem C, (L, C), 8 and a flow
reactive wire connections and WL for synchronous function family f
register connections, reflecting their different hardware Output: o € LSFP?'(S
semantics discussed in Section 2.3. Initially, all con- 1+ WL==Cs, WLe =Co=5U{_ > L}
nections are added to their respective worklists, and 2: while WL_ # 0 or WL # 0 do

e e ey 1 .) 3: if WL- # 0 then
the store o is initialized to L for each variable, with

Each change to o(x;) affects all items in Succ(s;) (Def-
inition 2.6) where Def(t;) = x;, which are added to the
appropriate worklist for further processing (Line 9-10).

Theorem 3.4 gives the convergence condition for Algorithm 1.

Add affected wire connections to WL-.
Add affected register connections to WL..

e) 4: Remove 1 from WL_.
overrides from the stimulus description § (Line 1). The 5. o= fl(e) > see Definition 3.5
algorithm repeatedly applies flow functions to items 6: else
in the worklists, updating o as necessary (Line 2-8). 7 o =f[WL=](o) » seeDefinition 3.6
8: WL =0
9:
10:

PC,6

THEOREM 3.4 (CONVERGENCE). Algorithm 1 converges to the least synchronized fixed point LSF P

if f is monotonic and (L, C) is a complete lattice with finite height.

Proor SKETCH. We construct a function which simulates Algorithm 1, and then prove its least
fixed point is equal to any element in LSFP}?"S by fixed-point theorems [69, 81, 111]. A detailed
proof is provided in the supplementary material due to space constraints. O

The time complexity of Algorithm 1 depends on the implementation of lattice operations, flow
functions, and worklist management. Assuming these operations all take constant time, we can
roughly estimate the complexity based on the number of single-point updates to the store . Since
each variable in C € Circuit can be updated at most s times—the height of the lattice L—the overall
convergence time is bounded by O(|C]| - h). Section 5 provides detailed runtime statistics from our
implementation in ChiSA, which incorporates careful optimization efforts. We omit discussion of
these efforts in this paper as they fall outside the scope of our core contributions.

3.4 Soundness and Precision Discussion of HVFA

This section establishes key properties of the SFPS and LSFPS solution from Section 3.3, focusing
on conditions that guarantee soundness and factors that influence precision.

3.4.1 Soundness Guarantee Conditions. The soundness of the synchronized fixed-point solution
SFPJCC"S to HVFA (Definition 3.4) is ensured when the flow function family f is itself sound, and the ini-

tial store derived from the stimulus description § (Line 1 or Algorithm 1) soundly over-approximates
the circuit’s initial configuration. This guarantee is formally established in Theorem 3.5.

THEOREM 3.5 (SOUNDNESS). 0 € SFP]C;‘S is sound (Definition 3.4) if f is sound (Definition 3.8) and

initial store defined by external description § over-approximates initial configuration cy (i.e. a(co) T 0y
whereog =6 LU {_+> L})

Proor SKETCH. We prove that Vc¢;.a(c;) E o by induction on the trace C F ¢y > ¢~ ...

Base Case: By assumption, a(cy) C oy, and since oy C o (Definition 3.11), a(c) E o .

Inductive Step: Let ¢; = (_, E;, _) and ¢j+1 = (_, Ei+1, _), and assume a(c;) C o, i.e., a(E;) € 0. We
prove a(ci4+1) E o, i.e., a(Ei+1) E o, by case analysis on the applied reduction rule:

(1) Case C-EVAL: E;,1 =[] (E;). By the soundness of f (Definition 3.8): «(E;) T o = a([[:](E;)) C
flt] (o). Since o is a synchronized fixed point (Definition 3.11), f[[:](¢) = o, thus a(E;+;) C o.

(2) Case S-Tick: E;y1 = [C<] (E;). Similarly, a(E;) C 0 = a(Eiy1) C f[C<](0) = 0.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:16 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

(3)Case S-PokE: Ej.1 = [x = n]|(E;) = E;[x — n]. By Definition 3.4, we have a(n) C §(x) = o(x),
thus a(E;i;+1) C o. O

The proof of Theorem 3.5 clarifies how the synchronized fixed-point solution soundly over-
approximates the dynamic circuit behavior defined by Ac. Owing to the deliberately minimal design
of Ac, which comprises only three reduction rules (Definition 2.14), the proof requires considering
just three corresponding cases.

3.4.2 Precision Affecting Factors. As shown in Algorithm 1, the fixpoint computation itself in-
troduces no additional imprecision beyond that already inherent in the flow function family f.
Consequently, the precision of the computed solution LSFP?"S is entirely determined by the preci-
sion of f. For a fixed circuit C and stimulus description &, a more precise flow function family yields
a more precise solution, as formally established in Theorem 3.6. This implies that the precision of a
hardware value flow analysis can be systematically improved by refining the flow functions, as

demonstrated in Example 3.3.

Definition 3.13 (Precision Ordering of Flow Function Families). For two flow function families f

and fp, we write fi E £ if Vi. fil:] € f£[].

THEOREM 3.6 (PRECISION ORDERING). If(L,C) is a complete lattice, f; C f;, 01 € LSFPCI"S

r , and

Oy € LSFPC;’(S, then o1 C 0.

ProoF SKETCH. We prove the theorem by constructing a unified function that emulates the entire
flow function family and applying Tarski’s fixed-point theorem [111]. A detailed proof is provided
in the supplementary material due to space constraints. O

Example 3.3 (A More Precise Flow Function for Zero Analysis). In the zero analysis of Example 3.2,
the flow function fz[[x = mux(w,y,2)](¢) = o[x +— o(y) U o(z)] introduces imprecision by
ignoring the path condition w. We present a more precise alternative, f,[x = mux(w,y,z)], that
explicitly accounts for the condition:

olx+— L] ifo(w) = 1, o[lx > o(z)] if o(w) = Z,
olx— o(y)]if o(w) =N, o[x o(y) U o(z)] otherwise .

Sl = mux(w,5.9)] (@) = {

It is straightforward to verify by case analysis that f}[[x = mux(w,y,2)] C fz[x = mux(w,y,2)].
By defining all other cases of f[[:] identically to fz[[:], we obtain f} C fz. Then, by Theorem 3.6,

the corresponding least fixed-point solution ¢’ € LSFPS? is more precise than o € LSFPCZ"S, ie.,
z

o' Co.

3.5 HVFA Instances for Lightweight Chisel Verification

By specifying different problem-specific lattices, stimulus descriptions, and flow function families,
various HVFAs can be instantiated to suit distinct application goals. As an illustration, this section
presents representative instances that support our lightweight analyses for critical Chisel verifi-
cation tasks, including bug detection and security analysis, as evaluated in Section 5. Since these
instances follow relatively standard formulations, we omit detailed discussion. To save space, we
reuse the template path-insensitive flow function family from Example 3.1 and only specify the
parts that differ.

3.5.1 Hardware Bug Detection. ChiSA identifies violable assertions (Section 5.1) by leveraging
interval analysis (Example 3.4) and constant propagation analysis (Example 3.5) to approximate
assertion violation conditions.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:17

Example 3.4. Interval analysis computes value ranges for each circuit location.

e Lattice: (L;,Cy), where L; = Interval U {_L} and: Interval := {[m,n] | m € {-0} UZ A n €
Z U {+co} Am < n} with Vx € Z. — 0o < x < +o0. The abstraction function is a;(n) = [n, n]. The
partial order is defined as: L Ty I foralll € Ly, and [a,b] Cf [c,d] iff. c<aAb<d.

o Stimulus Description: 5;(x) = [—oco, +00].

e Flow Function Family: [y op z]|L. = o(y) opr o(z), where [a,b] op; [c,d] = [min{m opn | m €
[a, 0] An e [c,d]},max{mopn|me [ab] Ane€ [c,d]}]and] op; L = L (symmetric).

Discussion About the Interval Lattice in Practice. The interval lattice Ly in Example 3.4 has in-
finite height and thus does not satisfy the convergence condition in Theorem 3.4, meaning that
convergence of Algorithm 1 in this case is not theoretically guaranteed by the theorem. However,
in practice, variables in Chisel have fixed-width integer types, such as UInt<3> for unsigned 3-bit
integers and SInt<4> for signed 4-bit integers. Consequently, the top lattice element T for a vari-
able of type UInt<n> is [0, 2" — 1], and for SInt<n>, it is [-2""!,2""! — 1]—both bounded ranges
rather than the unbounded [—oo, +o0]. Thus, the practical interval lattice has finite height, and the
interval analysis in practice will converge as guaranteed by Theorem 3.4. For completeness, note
that convergence over unbounded mathematical integers in Example 3.4 can be ensured using a
standard widening operator [82]. We omit further discussion of widening, as it is a well-established
technique, and our Chisel interval analysis already converges in practice without it.

Example 3.5. Constant propagation analysis tracks constants flowing through circuit locations.

o Lattice: (L¢c,Ec), where Lc = ZU{L, T}. The abstraction function is a¢c(n) = n. The partial order
is definedas: VI € Le. LCc I Ce T.

o Stimulus Description: §c(x) = T.

e Flow Function Family: [y op z]|$ = o(y) opc o(z), where m opc n =m opnif m,n € Z,1 opc L =
LifleLe,lope T=Tifl € Le — {L} (symmetric for both L and T).

3.5.2 Hardware Security Analysis. ChiSA detects confidentiality and integrity violations by iden-
tifying taint flows (Section 5.2) from secret sources to public sinks or from untrusted sources to
trusted sinks with the help of reachability analysis (Example 3.6).

Example 3.6. Reachability analysis computes which circuit locations are reachable from given
sources in Source.
e Lattice: (Lt,C7), where Lt = {1, T} with L Tt T. The abstraction function is ar(n) = L. A
location with abstract value T is considered reachable.
o Stimulus Description: t(x) = T if x € Source, otherwise dr(x) = L.
e Flow Function Family: [y op z]|L = o(y) Ur o(2), [mux(w,y,2) |1 = o(w) Ur o(y) Ur o(2).

4 ChiSA: A Proof of Concept

As a proof of concept for our theoretical foundations in Sections 2 and 3, we develop ChiSA (30K+
LoC), the first Chisel static analyzer capable of analyzing intricate hardware value flows to enable
sophisticated analyses for critical Chisel verification tasks, such as bug detection and security
analysis. To support future research and facilitate the development of new Chisel analyses, a
substantial portion of the codebase is dedicated to constructing reusable infrastructure. This section
offers a brief overview of how this infrastructure supports ChiSA’s end-to-end analysis workflow.

ChiSA’s core components—its IR (ChAIR) and fundamental analyses—are designed and imple-
mented based on the theoretical foundations of A¢ (Section 2) and HVFA (Section 3), respectively.
Due to space constraints, we do not provide detailed descriptions of ChiSA’s individual components;
interested readers can refer to our open-source code and documentation for implementation details
and engineering specifics.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:18 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

ChiSA: Chisel Static Analyzer
Frontend Chisel Verification Tasks
Chisel
Design IChisel CompﬂerH IR Builder l Chisel Bug Detection | | Chisel Security Analysis | | . |
Input
Support
Build 1) @ ® £ sure
Hardware Value Flow Analysis (HVFA)
Hardware Abstraction| ChAIR (Constant Propagation Analysis) (Interval Analysis) (Reachability Analysis) (_..)
(Register Reset Analysis) ((Memory Flow Analysis) (Cross-Module Flow Analysis)
Dispatched
to Analyses @ ® (Synchronized Fixed-Point Solver) - (Synchronous Flow Function Model)
I Multiple Analyses Management l ® (Digital Dependency Graph) (Clock Tree) (Hardware Value Flow Graph) (...)
Analysis <:| <:| (Temporal Relation Graph) (Module Instantiation Graph) (On-Demand Sliced Circuit)
Results 0 |New Analysis Dev. & Integrationl Common Facilities
utput - Executed
Analysis Manager on IR Fundamental Analyses

Fig. 3. The architecture and end-to-end workflow of ChiSA.

Figure 3 illustrates ChiSA’s architecture and end-to-end workflow, which are inspired by high-
quality software analysis frameworks [20, 64, 109]. ChiSA takes a Chisel hardware design (or a
Chisel program) as input and produces analysis results such as bug reports or security warnings:

e D & (@ : Given a Chisel design as input, the ChiSA frontend first builds our ChAIR by reusing
standard passes from Chisel’s official compiler [12, 13] for common compilation tasks, followed
by a dedicated IR builder that applies ChiSA’s custom transformations to generate ChAIR.

e ® & @ :Next, the analysis management system dispatches the IR to the analyses requested by
users and orchestrates their executions, managing possible intricate analysis dependencies and
configurations. This system also provides mechanisms that facilitate developers to develop and
integrate new analyses by reusing existing ones.

e (5 : Analyses for Chisel verification tasks require substantial infrastructure support. Central to
this are various hardware value flow analyses (HVFAs) that provide fundamental information
about Chisel hardware designs. Additionally, ChiSA offers common facilities including a rich set
of useful graph representations built on top of ChAIR and a circuit slicing tool to help hardware
designers narrow down the scope of bug localization during debugging. These components are
general-purpose and designed to be reusable for future analyses.

e (©): Finally, the analysis manager outputs the analysis results as bug reports or security warnings,
depending on the specific verification tasks.

5 Evaluation
To validate ChiSA’s effectiveness for Chisel verification, we address the following research questions:
RQ1. How does ChiSA support hardware bug detection compared to bounded model checking?
RQ2. How does ChiSA perform in hardware security analysis compared to secure type systems?
To our knowledge, no existing static analysis work can detect our target Chisel bugs and security
vulnerabilities, as these require sophisticated reasoning about hardware value flows—capabilities
beyond current AST-based analyses in the Chisel compiler (see the next paragraph). Consequently,
we compare ChiSA against state-of-the-art techniques in respective verification tasks: bounded
model checking for bug detection and secure type systems for security analysis.

Comparison with Official Chisel Compiler. The official Chisel compiler provides only basic static
analyses (e.g., type checking) operating on the Firrtl AST, with constant propagation as its sole data

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:19

flow analysis. To address the potential concern regarding how ChiSA performs against the only
available comparable analysis, we compared both implementations on the Chisel compiler’s official
test suite (877 tests). ChiSA’s constant propagation identified 99.8% of the constants detected by the
official implementation (20,509 constants total) while achieving superior performance (1.5s vs. 2.1s).
This result is significant given that the official compiler’s constant propagation is highly optimized
and specifically designed to exploit the Firrtl AST information. The results (comparable soundness
and precision) indirectly demonstrates that ChiSA’s streamlined IR (Section 2) effectively preserves
essential semantic information from the Firrtl AST level, while also validating ChiSA’s fundamental
analytical capabilities in non-verification tasks.

Benchmarks. To support thorough evaluation of both ChiSA and future research on Chisel
static analysis, we provide ChiSABench, a comprehensive Chisel static analysis benchmark suite
encompassing over eleven million lines of code.

Real-world Chisel projects typically involve a mix of heterogeneous languages—including hard-
ware languages such as Chisel and Verilog, software languages such as Scala, Java, and C, and
assembly languages like RISC-V—each with its own build system and dependency management. In
practice, only specific version combinations of these toolchains and dependencies are known to
work, making it cumbersome to build all benchmarks in ChiSABench from scratch.

To address this, we invested considerable effort to pre-elaborate all designs in ChiSABench
into standalone Firrtl [63] files, eliminating the need for tedious environment setup or project-
specific build steps. This greatly enhances ChiSABench’s out-of-the-box accessibility and hands-
on usability for future research. Additionally, although the TrustHub [102, 104] benchmark was
originally written in Verilog [1], we incorporate it in ChiSABench due to the absence of authoritative
security benchmarks for Chisel. To make it compatible, we convert it to Firrtl using Yosys [11], a
widely adopted open-source hardware synthesis tool that supports Verilog-to-Firrtl translation, as
recommended by the official Firrtl project itself [12].

As summarized in Table 1, ChiSABench distinguishes itself through the following attributes:

o Authority: The hardware designs in ChiSABench are primarily drawn from Chisel’s official
toolchain [12-14] and from projects endorsed by the Chisel community [32].

o Diversity:

(1) Language Feature Diversity: ChiSABench includes official compiler and simulator test cases
that exercise a comprehensive spectrum of Chisel language features.

(2) Design Purpose Diversity: ChiSABench includes a wide range of real-world applications, such as
system-on-chip (SoC), network-on-chip (NoC), deep neural network (DNN) accelerators, and
vector co-processors. Notably, it also incorporates security-relevant benchmarks, including
information leak trojans from the widely used TrustHub suite [102, 104] and secure type
system tests from the state-of-the-art ChiselFlow project [47], facilitating evaluation of
security-oriented analyses.

(3) Code Scale Diversity: ChiSABench spans designs ranging from a few dozen lines to over seven
million lines of code, enabling evaluation across projects of vastly different sizes.

o Real-World Impact: ChiSABench features numerous popular open-source Chisel hardware projects
with significant community adoption—many with thousands of GitHub stars. These projects,
categorized as real-world and large-scale in Table 1, reflect practical relevance and ensure that
analyses evaluated on ChiSABench are applicable to production-level designs.

Implementation. To balance fine-grained control over analysis efficiency with seamless integra-
tion into the Chisel ecosystem (written in Scala), we choose to implement ChiSA in Java. The

ChiSA codebase comprises over 30K lines of Java code. To ensure robustness, we have thoroughly

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:20 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Table 1. Overview of ChiSABench. Characteristic denotes the primary attribute of each benchmark category.
Design Purpose describes the original design intent of each benchmark. Benchmark lists the names of all
benchmarks. #Designs indicates the number of hardware designs in each benchmark. LoC reports the total
lines of pre-elaborated Chisel hardware designs in Firrtl [63] that enhances accessibility and usability.

Characteristic Design Purpose Benchmark #Designs LoC
Feature-Diverse Official Toolchain Tests Chisel3 [12-14] 877 224,845
Rocket [16] 2 560,405
BOOM [23] 1 550,147
System-on-Chip Quasar [6] 1 159,179
Sodor [100] 5 21,109
RiscvMini [99] 1 2,971
Real-World leeNet [95]
. ceNet |98 1 236,506
Network-on-Chip Constellation [124] 1 5,389
Deep Neural Network Accelerator Gemmini [50] 1 632,327
Vector Co-Processor Hwacha [76] 1 553,087
Large-Scale System on Chip XiangShan [119] 1 7,176,167
Information Leak Trojan TrustHub [102, 104] 25 1,155,854
Vulnerable
Secure Type System Tests ChiselFlow [47] 18 657
Total: 935 11,278,643

exercised all analyses in ChiSA across the entire ChiSABench suite (11M+ LoC), with no crashes
observed. We will publicly release both ChiSA and ChiSABench to support future research and
development in static analysis for Chisel.

Experimental Setup. All experiments were conducted on an Intel Xeon 2.2GHz machine with
the JVM heap memory capped at 64GB. We evaluate ChiSA on different portions of ChiSABench
(Table 1), selectively chosen to align with the specific goals of each experiment. The rationale for
each selection is provided in the corresponding subsections.

5.1 RQ1: Hardware Bug Detection — ChiSA vs. Bounded Model Checking

Hardware bug detection remains a highly challenging task, even in industrial settings. According
to Siemens’s 2024 global industry study [49], fewer than 15% of hardware projects reported zero
bug escapes into production, despite substantial verification investments. Among these bugs, logic
errors have consistently been the leading cause over the past decades [49]. A widely adopted
paradigm for detecting such errors is assertion-based verification (ABV) [115], which checks for
violations of assertions that encode correctness properties. Therefore, we select assertion violation
detection as a representative task to evaluate ChiSA’s lightweightness and effectiveness in hardware
bug detection.

The state-of-the-art technique for automated assertion violation detection in Chisel is bounded
model checking (BMC), provided by ChiselTest [73] (hereafter referred to as ChiselTest-BMC).
ChiselTest-BMC serves as the BMC backend in most of the recent Chisel verification efforts [42,
105, 121], including the latest one [105]. While BMC can perform well on small-scale designs, it
fundamentally struggles to scale to real-world, complex hardware designs with millions of lines of
code, due to the well-known state explosion problem [30]. This is exactly the scenario where static

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:21

Table 2. Results of ChiSA’s static assertion analysis compared to ChiselTest-BMC [73]. For each benchmark,
we report the number of violable assertions detected (#Violable), those partially validated by manually writing
assertion-triggering module-level testbenches (#P-Validated), the number of designs the tool failed to handle
due to crashes (#Crashes), and total runtime (in seconds). ChiselTest-BMC was configured with a 10-cycle
bound. It failed on all complex real-world designs, producing various errors (detailed in Section 5.1).

ChiSA ChiselTest-BMC
Feature Benchmark LoC #Violable #Crashes Time #Violable 4Crashes Time
(#P-Validated) (s) (#P-Validated) (s)
hisel 2
Small-Scale _ Clisel3 °6 25 (24) 0 3.1 139 (139) 72 27763
(877 designs) (on average)
XiangShan 7,176,167 28 (23) 0 145.3 Assumption Errors
Gemmini 632,327 8(7) 0 10.7 Internal Errors
Rocket 560,405 13 (13) 0 9.6 Incomplete Errors & Internal Errors
Hwacha 553,087 7(7) 0 10.8 Internal Errors
Real-World Boom 550,147 7(3) 0 17.6 Incomplete Errors
IceNet 236,506 0 (0) 0 3.8 Incomplete Errors
Constellation 5,389 6(3) 0 0.1 Incomplete Errors
Total: 9,714,028 69 (56) 0 197.9 0(0) 8 -

analysis can serve as a lightweight complement—requiring significantly less time while still being
effective.

ChiSA’s static assertion analysis detects assertion violations by approximating the conditions
under which an assertion might be violated, leveraging two HVFA instances: interval analysis
(Example 3.4) and constant propagation (Example 3.5). Although this approximation-based approach
is inherently less accurate than BMC’s exhaustive state enumeration, it remains effective on large,
real-world hardware designs while being significantly more lightweight. To demonstrate this,
we applied ChiSA’s static assertion analysis to all Chisel designs in ChiSABench that include
developer-inserted, real-world embedded assertions.

As shown in Table 2, ChiSA efficiently completed whole-program analysis on real-world designs
totaling over 9 million lines of code in under 200 seconds, identifying 69 potentially violable asser-
tions. Due to the large codebase and complexity of these projects, manually verifying all detected
assertions through system-level testbenches is infeasible. Instead, we partially validated ChiSA’s
results by constructing module-level testbenches: 56 of the flagged assertions were successfully
triggered, each causing the corresponding assertion to fail. On average, crafting each testbench
involved manually inspecting thousands of lines of hardware module code to figure out the assertion
violation scenario. This manual validation provides partial confirmation of ChiSA’s effectiveness in
uncovering risky assertion violations. Notably, eight assertion violations were recognized by the
developers and scheduled for future fixes—further showcasing the potential of static analysis to aid
in detecting hardware bugs. All testbenches used to trigger these assertion failures will be included
in our artifact.

In contrast, ChiselTest-BMC failed to analyze any of these real-world designs, reporting various
types of errors stemming from its own limitations:

o Incomplete Errors: The most common failure mode was incomplete errors, observed in four designs.
These were caused by the presence of external modules whose definitions were inaccessible—a
common scenario in hardware development due to the frequent use of intellectual property
(IP) cores. ChiSA handles such cases by supporting incomplete analysis through automatic

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:22 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

and conservative approximation of external component behavior—giving it an advantage over
ChiselTest-BMC in realistic design settings.

o Assumption Errors: ChiselTest-BMC failed to analyze the XiangShan system-on-chip (SoC) [119],
reporting an assumption error due to unmet internal expectations, such as requiring exactly one
input port named clock. This suggests that the assumptions underpinning ChiselTest-BMC are
too narrow to accommodate popular and production-ready designs such as XiangShan, which
has been successfully taped out [119]. These assumptions are required by ChiselTest-BMC to
construct a precise model of the hardware design for property checking. In contrast, ChiSA does
not rely on such assumptions, thanks to the over-approximate nature of static analysis—making
it more applicable to complex, real-world scenarios.

o Internal Errors: The remaining three designs triggered internal errors due to unhandled edge
cases or limitations in the tool’s implementation, producing error messages like “Internal Error!
Please file an issue at our repository.” The official ChiselTest-BMC test suite [4] primarily consists
of small examples averaging fewer than 100 lines of code, which do not reflect the complexity
and scale of real-world Chisel designs. This suggests that, although ChiselTest-BMC represents
the current state of the art, it has not been adequately tested against real-world cases.

To further highlight ChiSA’s lightweight nature, we additionally evaluated both tools on 877
small-scale, simpler Chisel designs (average 256 LoC), where runtime statistics for ChiselTest-BMC
could be obtained. As shown in Table 2, ChiSA completed the analysis of all these designs in just 3
seconds, a significant reduction compared to the 2776 seconds required by ChiselTest-BMC. Even
in this small-scale evaluation, ChiselTest-BMC reported 72 crashes, in stark contrast to ChiSA,
which completed all analyses without a single failure.

It is also evident from Table 2 that although ChiSA demonstrates promising results on complex
real-world designs, it is less capable of uncovering violable assertions than ChiselTest-BMC in cases
where BMC works well. This is because ChiSA deliberately trades soundness for precision here to
reduce false positives and enhance practical usability. Specifically, a Chisel assertion consists of
a predicate signal and an enable signal, and triggers a failure when predicate is false while
enable is true. A sound approach would flag all assertions where predicate may be false and
enable may be true, but in practice, this leads to many false positives. To address this issue, ChiSA
flags only those assertions where the predicate must be false while the enable signal may be
true. This approach significantly reduces false positives while maintaining sufficient soundness to
remain useful, as already illustrated via experiments on complex, real-world Chisel designs.

Case Study. To illustrate the violable assertions identified by ChiSA in Table 2, we present a
representative case that has been recognized by the developers and scheduled for future fixes.
This assertion violation was found in the DCache module (6.6K LoC) of the Rocket [16] system-
on-chip (SoC), and takes the form (simplified for readability) assert(clock, release_ack_wait,
grantIsVoluntary, "A ReleaseAck was unexpected by the dcache.") in ChAIR, ChiSA’s
intermediate representation. This assertion ensures that ReleaseAck messages—a type of acknowl-
edgement in the TileLink protocol [62]—arrive only when the cache expects them. Violating this
assertion could signal a protocol mismatch, potentially leading to inconsistent cache states or
deadlocks. The assertion fails when the predicate signal release_ack_wait is false (i.e., the
cache is not expecting an acknowledgment), while the enable signal grantIsVoluntary is true
(i.e., a ReleaseAck message is present). The clock argument is simply the signal used to drive
runtime assertion checks and does not affect the assertion logic itself. ChiSA detects this assertion
as potentially violable by querying the results of constant propagation and interval analysis. It
determines that release_ack_wait is statically false, while grantIsVoluntary may be true,
thereby flagging the assertion as potentially violated. Our test case triggers this assertion violation

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:23

Table 3. Results of ChiSA’s taint analysis compared to the secure type system provided by ChiselFlow [47].
#Designs denotes the number of designs and Function denotes their hardware functionality. “*” indicates
ChiselFlow’s developer-crafted micro-benchmark with no specific hardware functionality. For each benchmark,
we report the number of detected unintended information flows (#Vulnerabilities), including false positives
(#FP) and false negatives (#FN), the number of required annotations (#Annotations)—sources/sinks for ChiSA,
type labels for ChiselFlow—and analysis time in seconds. “—” denotes that ChiselFlow could not be applied
due to the prohibitive annotation overhead. For the ChiselFlow benchmark, since the ground truth is derived

from ChiselFlow’s own results, we omit redundant reporting in the ChiselFlow columns.

#Designs ChiSA ChiselFlow
Benchmark x LoC #Vulnerabilities #Annotations Time #Annotations Time
Function (#FP / #FN) (#Sources / #Sinks) (s) (Type Labels) (s)
ChiselFlow 18 % * 655 19(1/0) 44 (25/ 19) 0.006 228 14.475
19 X AES [85] 1,004,180 54 (0/0) 73 (19 / 54) 0.175
3 x ISCAS89 [21] 143,440 3(0/0) 6(3/3) 0.435
TrustHub 1 X PIC16F84 [65] 5,932 1(0/0) 2(1/1) 0.017 _
2 x RSA [83] 2,302 2(0/0) 4(2/2) 0.005
Total: 1,155,854 60 (0/0) 85 (25 / 60) 0.632

by issuing a voluntary release operation and delivering the corresponding ReleaseAck in the same
clock cycle, revealing that the DCache fails to handle a legal scenario in which acknowledgments
arrive with minimal latency during valid protocol transactions.

5.2 RQ2: Hardware Security Analysis — ChiSA vs. Secure Type System

Hardware security has become increasingly critical in this new golden age of computer architec-
ture [53, 54]. A fundamental road for uncovering insecure hardware behavior is the detection of
unintended information flows [56]. We therefore select this task—detecting unintended information
flows—as a representative case to evaluate ChiSA’s lightweightness and effectiveness in hardware
security analysis. Because evaluating unintended information flow detection requires ground-truth
knowledge of design intent, we limit our evaluation to the ChiselFlow [47] and TrustHub [102, 104]
benchmarks from the ChiSABench suite, both of which include ground-truth labels for unintended
information flows.

The state-of-the-art in hardware security for Chisel—SecChisel [39, 40] and ChiselFlow [47]—
relies on extending Chisel’s type system with security labels to detect unintended information
flows via type annotations. However, this type-system-based approach requires substantial manual
annotation effort [91, 92] that scales with code size, placing a significant burden on hardware
designers and limiting its adoption in large, real-world projects. For example, as shown in Table 3,
ChiselFlow requires as many as 228 type labels to detect only 18 unintended flows in its own
benchmark, which contains just 657 lines of code. We do not include SecChisel in this evaluation
because it is not open-source and its core methodology closely mirrors that of ChiselFlow.

ChiSA’s taint analysis detects unintended information flows—referred to as taint flows—by track-
ing value flows from private sources to public sinks (confidentiality violations) or from untrusted
sources to trusted sinks (integrity violations). It performs this tracking via the reachability analysis
(Example 3.6) powered by HVFA. Unlike ChiselFlow, which requires fine-grained type annotations
throughout the entire flow path—including all intermediate variables and statements—ChiSA’s
taint analysis only requires users to annotate sources and sinks via a lightweight configuration file
to express their security intent and will automatically check whether there’re unintended taint
flows between from specified sources to sinks. As a result, the annotation effort required by our

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:24 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

approach scales with the hardware design’s security goals expressed in source/sink pairs, rather
than with the code size (as required by ChiselFlow’s type annotations), drastically reducing the
manual burden.

As shown in Table 3, ChiSA’s taint analysis detects all 18 taint flows in the ChiselFlow benchmark
using just 44 source/sink annotations—a substantial reduction compared to ChiselFlow’s 228 type
annotations. This demonstrates ChiSA’s lightweight annotation burden compared to ChiselFlow,
significantly reducing manual effort and making it far more practical for real-world hardware
security analysis.

Another important advantage of ChiSA over ChiselFlow is its ability to be retroactively applied
to large, existing Chisel codebases that lack security type labels. This is a far more common scenario
in practice, because real-world projects typically adopt the standard Chisel type system, which is
officially supported and actively maintained, whereas ChiselFlow remains a research prototype
without active maintenance. As shown in Table 3, ChiSA efficiently detects all 60 information-
leak vulnerabilities in the TrustHub benchmark—which comprises over a million lines of code—
using only 85 source/sink annotations provided as analysis configuration, exhibiting a lightweight
annotation burden at this scale. In contrast, ChiselFlow is inapplicable to TrustHub due to the
prohibitive manual effort required to retrofit millions of lines of existing code with its fine-grained
type system, whose annotation burden scales with code size.

The single false positive ChiSA reported on the ChiselFlow benchmark stems from its over-
approximate analysis, which may soundly flag infeasible taint flows that cannot occur in actual
executions. In contrast, ChiselFlow avoids this false positive by leveraging fine-grained type
annotations along the entire information flow path. These annotations can encode path conditions
using dependent types, allowing ChiselFlow to distinguish merged flows with higher precision.
Nevertheless, we argue that this modest loss of precision is a worthwhile trade-off for the significant
reduction in manual annotation effort afforded by ChiSA.

Case Study. To shed light on the vulnerabilities detected by ChiSA, we examine AES-T100 (1.2K
LoC), the first case in TrustHub’s information-leak vulnerability suite [102, 104] as an example. This
benchmark contains a cryptographic chip running the AES algorithm that has been compromised
with a hardware Trojan, which leaks the secret key through a covert channel. Following the security
intent described in the benchmark’s official documentation, we configure ChiSA’s taint analysis
by marking the input port top.key—which carries the secret AES key—as a secret source, and
the output port top.Capacitance—a signal observable via physical measurements—as a public
sink. Leveraging its underlying hardware value flow analysis, ChiSA automatically identifies an
unintended information flow from top.key to top.Capacitance without further manual effort
beyond these two source/sink configurations, thereby revealing a violation of confidentiality and
indicating the presence of the Trojan. In contrast, existing secure type systems such as ChiselFlow
are not directly applicable, as AES-T100 was written using the standard type system rather than
ChiselFlow’s extended version. Although conceptually possible, retrofitting an existing codebase
with a new type system is highly impractical in reality: ChiselFlow’s own benchmark (655 LoC)
requires 228 manual security annotations, highlighting the substantial annotation burden introduced
by its type-based approach. This case study underscores the practicality of ChiSA’s analysis for
identifying security vulnerabilities in unmodified, real-world hardware designs without requiring
intrusive code changes or extensive manual effort.

6 Related Work

Chisel Verification. Unlike ChiSA’s lightweight static analysis approach, existing Chisel verifica-
tion techniques largely adopt heavyweight methodologies inherited from the broader hardware

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:25

community, with the efficiency limitations already discussed in Section 1. Here, we examine these
efforts in greater detail, tracing their methodological roots to traditional hardware verification:

(1) Simulation-Based Testing. ChiselTest [101], integrated within the ScalaTest framework [7],
provides robust IDE support and continuous integration capabilities for executing unit-level simu-
lation tests. It runs simulations by interpreting either Chisel-generated Verilog via Verilator [106],
or Chisel’s compiler intermediate representation, Firrtl [63], via Treadle [14]. ChiselVerify [43]
extends ChiselTest by introducing coverage metrics [41], fuzzing capabilities [44], and features
specifically tailored for testing approximate hardware designs [37]. DESSERT [67], an advancement
over Strober [68], enhances simulation performance by translating Firrtl to FAME1 [110] for FPGA
acceleration, and supports efficient differential testing for Chisel designs.

Rather than comparing against dynamic testing approaches, we focus our evaluation on static
analysis versus other static techniques. This follows common practice, as static and dynamic
methods are generally considered orthogonal, each addressing distinct verification dimensions [2].

(2) Formal Verification. ChiselTest [73] and ChiselVerify [42] provide bounded model checking
(BMC) abilities by translating Firrtl designs into transition systems expressed in SMTLib [18] or
Btor2 [88], then solving them using Z3 SMT Solver [38] or BtorMC model checker [88]. CHA [121],
built atop ChiselTest, extends its assertion support to include SystemVerilog Assertions (SVAs)[5].
ChiselFV [117] also supports SVA but instead compiles Chisel with embedded assertions directly to
SystemVerilog and leverages SymbiYosys [10] for SystemVerilog BMC. Due to the well-known state
explosion problem [30], bounded model checking (BMC) suffers from poor scalability and is thus
typically applied only to small-scale designs [105, 118]. Chicala [46], inspired by V2C [3]—a Verilog
to C translator, translates Chisel designs into behaviorally equivalent Scala programs, which are
then verified using Stainless [9], a theorem-proving tool for Scala.

(3) Secure Type System. SecChisel [39, 40] and ChiselFlow [47], closely following the design of
SecVerilog [123], extend Chisel’s type system to express security policies via type annotations.
These annotations are translated into type constraints and then statically checked using the Z3
SMT solver [38] to detect violations of confidentiality and integrity properties.

Our evaluation (Section 5) compares ChiSA’s static analyses with representative techniques from
both (2) Formal Verification and (3) Secure Type Systems, showing that ChiSA provides an effective
and significantly more lightweight solution, particularly for large, real-world Chisel designs.

Static Analysis for Verilog. Despite Chisel’s current reliance on Verilog as a backend for compati-
bility with the existing commercial electronic design automation (EDA) ecosystem, these static
analyses designed for regular hand-written Verilog are ill-suited for Chisel-generated Verilog. Here
we review mainstream static analysis approaches developed for Verilog to clarify this mismatch, as
well as highlighting the need for Chisel-native static analyses that ChiSA provides.

The development of static analysis for Verilog remains far less mature than that for software
programming languages. In practice, static analysis for Verilog is overwhelmingly dominated by
linters, including open-source tools such as Slang [95], Verible [26], and SVLint [52], as well as
industrial-grade solutions like Spyglass Lint [107]. These tools perform syntactic, stylistic, and
pattern-based checks over abstract syntax trees (ASTs) to detect common issues in regular hand-
written Verilog early in the design cycle. However, linting rules that are effective for regular hand-
written Verilog can break down when applied to Chisel-generated Verilog. For example, a widely
adopted rule flags variables in combinational always blocks that are not assigned along all execution
paths—a heuristic commonly used to detect unintended latch inference. Yet this rule becomes totally
useless in Chisel-generated Verilog, which, due to Chisel’s structural modeling semantics, does
not emit combinational always blocks at all. This disconnect highlights the limitations of directly

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

18:26 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

reusing Verilog-oriented static analyses for Chisel workflows and underscores the need for dedicated
analyses specifically tailored to Chisel’s design idioms.

Other tools, such as Pyverilog [108] and VeriPy [96], construct graph-based representations from
Verilog ASTs to perform control-flow and data-flow analyses. These approaches are well-suited
to Verilog’s behavioral modeling constructs, such as always blocks, which encapsulate control
and computation logic. In contrast, Chisel eschews behavioral modeling in favor of structural
descriptions targeting synthesizable hardware descriptions. As a result, the Verilog emitted by
Chisel tends to contain flat, repetitive always blocks that encode simple register connections,
with minimal embedded control or computation logic. This flattening substantially diminishes the
effectiveness of control/data-flow analyses designed for regular hand-written Verilog. Altogether,
the structural gap between regular hand-written Verilog and Chisel-generated Verilog highlights
the inadequacy of repurposing Verilog-based static analysis tools for Chisel.

Not only are existing Verilog static analysis tools inherently ill-suited for reuse in Chisel contexts,
as discussed above, but even static analyses specifically tailored for Chisel-generated Verilog
will still face fundamental limitations. The key issue is that important Chisel-specific semantic
information is lost during the Verilog generation process, making it infeasible to reconstruct
high-level analysis targets. This further underscores the necessity of Chisel-native static analyses
that ChiSA provides. We highlight this mismatch with three intuitive examples: First, assertions
written in Chisel do not survive the standard translation into Verilog, eliminating the possibility of
performing static assertion analysis (discussed in Section 5.1) directly on the generated Verilog.
Second, while Chisel source locations are embedded in the generated Verilog, they are stored only
in comments. Because comments are discarded during parsing, this information is inaccessible to
Verilog-based analysis tools, undermining traceability of analysis results. For instance, applying
circuit slicing—provided by ChiSA to reduce bug localization scope for hardware designers (though
not discussed in detail)—would require tough manual effort to trace analysis results back to the
original Chisel code, substantially harming usability. Third, Chisel treats memories as distinct
language constructs, allowing native analyses to handle them differently from register vectors. In
Chisel-generated Verilog, however, memories are lowered into register vectors indistinguishable
from manually written register vectors. This erasure of semantic distinction prevents specialized
treatment of Chisel memories, such as modeling read/write latencies or resolving read-under-write
behavior—capabilities that facilitate more Chisel-targeted analysis.

Theoretical Foundations of Analysis for Traditional Hardware Description Languages (HDLs). Al-
though no prior theoretical foundations have been proposed for Chisel static analysis, analysis
theories do exist for traditional HDLs—most representatively, abstract interpretation for Verilog [84]
and VHDL [57-59]. Additionally, formal semantics for Verilog [25, 27, 79] and VHDL [60] can also
support analysis theories. However, these theories target the behavioral modeling paradigm of
traditional HDLs (as discussed in the Static Analysis for Verilog paragraph above) and formalize
heavyweight features specific to that paradigm, making them ill-suited to Chisel’s lightweight,
structural-oriented nature. To address this gap, we present the first theoretical foundation targeting
Chisel, capturing its essence in a minimal way to enable tractable reasoning about static analyses.

Lightweight Formal Methods for HDLs. Besides static analyses—the primary focus of this paper—
type systems constitute another representative class of lightweight formal methods that have been
extensively developed in the programming languages (PL) community. Advanced type systems
can facilitate static analyses by encoding richer semantic information in program and enforcing
stronger safety properties through type checking [87]. However, the standard type systems of
traditional HDLs (e.g., Verilog [1]) remain relatively basic and lack the expressive power and safety
guarantees common in PL research. Recently, several novel HDL type systems have been proposed

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

ChiSA: Static Analysis for Lightweight Chisel Verification 18:27

to encode richer semantic information in program and enforce stronger reliability-related properties
for safe composition [28, 89, 90].

For instance, timeline types [89, 90] have been proposed to encode timing constraints, thereby
preventing structural hazards that harm safe composition through type checking. In contrast,
because Chisel’s standard type system does not provide this timing information, ChiSA would need
to approximate this information if it were to detect timing-related issues such as structural hazards,
which introduces additional computational overhead and potential imprecision. Specifically, the
analysis would have to approximate the number of clock cycles it takes for a signal starting from
an input port to arrive at an output port by counting the register connections along paths in the
value flow graph (Definition 2.6). If Chisel were equipped with timeline types in the future, this
information would be immediately and precisely available, enabling more efficient and effective
static analyses in ChiSA for timing-related issues.

Another example is wire sorts [28], a type system designed for safe composition by enforcing
the absence of combinational loops via type checking. Similar to the discussion of timeline types
above, future analyses in ChiSA could also benefit from the combinational reachability information
encoded in wire sorts, if such a type system were integrated into Chisel.

7 Conclusions

This work establishes a theoretical foundation for Chisel static analysis. We introduced Ac, a
minimal core calculus that captures the essence of Chisel while enabling rigorous reasoning
about static analysis. Building on A¢, we formalized the hardware value flow analysis (HVFA)
problem, adapting classical data/value flow analysis from software to hardware by handling the
essential feature of Chisel, i.e., synchronous semantics of clock-driven hardware registers. We
proved key theorems establishing HVFA’s guarantees and limitations. As a proof of concept, we
developed ChiSA, the first Chisel static analyzer capable of analyzing intricate hardware value
flows for verification tasks such as bug detection and security analysis. To thoroughly evaluate
ChiSA’s effectiveness, we introduce ChiSABench, a comprehensive benchmark suite for Chisel
static analysis. Our evaluation on ChiSABench demonstrates that ChiSA offers an effective and
highly lightweight approach, significantly outperforming state-of-the-art techniques on large,
real-world Chisel designs. By open-sourcing both ChiSA (30K+ LoC) and ChiSABench (11M+ LoC),
we hope to facilitate future research in Chisel static analysis and inspire broader applications of
programming language techniques to hardware verification.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. This work is supported
in part by National Key R&D Program of China under Grant No. 2023YFB4503804 and National
Natural Science Foundation of China under Grant No. 62402210. Tian Tan, the co-corresponding
author, is also supported by Xiaomi Foundation.

Data-Availability Statement

We have provided an artifact [35] that automatically reproduces all experimental results presented
in Section 5 and includes the full open-source release of both ChiSA and ChiSABench as promised.
The artifact is available at https://doi.org/10.5281/zenodo.17700253. To reproduce the results, please
refer to the instructions provided in the accompanying README . pdf document within the artifact.
In addition, we have provided supplementary material [36] that presents the full specification
of ChAIR and complete proofs of key theoretical results omitted from the paper due to space
constraints. The supplementary material is available at https://doi.org/10.5281/zenodo.17623491.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.5281/zenodo.17700253
https://doi.org/10.5281/zenodo.17623491

18:28 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

References

[1] 2005. IEEE Standard for Verilog Hardware Description Language. doi:10.1109/IEEESTD.2006.99495 ISBN:
9780738148519.

[2] 2007. Static and Dynamic Analysis: Better Together. In Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, 302-302. doi:10.1007/978-3-540-76637-7_20

[3] 2016. v2c — A Verilog to C Translator. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, 580-586. doi:10.1007/978-3-662-49674-9_38 ISSN: 0302-9743, 1611-3349.

[4] 2021. Tests for ChiselTest Bounded Model Checker. https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/

chiseltest/formal/examples.

[5] 2023. IEEE Standard for SystemVerilog-Unified Hardware Design, Specification, and Verification Language. doi:10.

1109/ieeestd.2024.10458102 ISBN: 9798855705003.

[6] 2023. Quasar 2.0: Chisel equivalent of SweRV-EL2. https://github.com/Lampro-Mellon/Quasar/tree/

2bc0985afd670d0c9b1b6983b53c3c2b340fch5a.

2025. ScalaTest: A testing tool for Scala and Java developers. https://github.com/scalatest/scalatest.

2025. SiFive. https://www.sifive.com/.

[9] 2025. Stainless: Verification Framework and Tool for Higher-order Scala Programs. https://github.com/epfl-lara/
stainless.

[10] 2025. SymbiYosys (sby): Front-end for Yosys-based Formal Verification Flows. https://github.com/YosysHQ/sby.

[11] 2025. Yosys Open SYnthesis Suite. https://github.com/YosysHQ/yosys.

Chips Alliance. 2022. Firrtl: Flexible Intermediate Representation for RTL. https://github.com/chipsalliance/firrtl/

tree/v1.5.6.

[13] Chips Alliance. 2023. Chisel: A Modern Hardware Design Language. https://github.com/chipsalliance/chisel/tree/v3.

5.6.

Chips Alliance. 2023. Treadle: A Chisel/Firrtl Execution Engine. https://github.com/chipsalliance/treadle/tree/v1.5.6.

Krste Asanovic. 2020. Information on Coreplex IP Access. https://forums.sifive.com/t/information-on-coreplex-ip-

access/105/8.

[16] Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical
Report UCB/EECS-2016-17. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[17] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avizienis, John Wawrzynek, and
Krste Asanovi¢. 2012. Chisel: constructing hardware in a Scala embedded language. In Proceedings of the 49th Annual
Design Automation Conference. ACM, San Francisco California, 1216-1225. doi:10.1145/2228360.2228584

[18] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2025. The SMT-LIB Standard: Version 2.7. Technical Report.
Department of Computer Science, The University of Iowa.

[19] Scott Beamer and David Donofrio. 2020. Efficiently Exploiting Low Activity Factors to Accelerate RTL Simulation. In
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, San Francisco, CA, USA, 1-6. doi:10.1109/DAC18072.
2020.9218632

[20] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.
SIGPLAN Not. 44, 10 (Oct. 2009), 243-262. doi:10.1145/1639949.1640108

[21] F. Brglez, D. Bryan, and K. Kozminski. 1989. Combinational profiles of sequential benchmark circuits. In IEEE
International Symposium on Circuits and Systems. IEEE, Portland, OR, USA, 1929-1934. doi:10.1109/ISCAS.1989.100747

[22] Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, and Frederic Petrot. 2022. Toward Agile Hardware
Designs With Chisel: A Network Use Case. IEEE Des. Test 39, 1 (Feb. 2022), 77-84. doi:10.1109/MDAT.2021.3063339

[23] Christopher Celio, David A. Patterson, and Krste Asanovi¢. 2015. The Berkeley Out-of-Order Machine (BOOM):
An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor. Technical Report UCB/EECS-2015-167.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html

[24] Vikas Chauhan, Neel Gala, and V. Kamakoti. 2016. ChADD: An ADD Based Chisel Compiler with Reduced Syntactic
Variance. In 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded
Systems (VLSID). IEEE, Kolkata, India, 499-504. doi:10.1109/VLSID.2016.44

[25] Qinlin Chen, Nairen Zhang, Jinpeng Wang, Tian Tan, Chang Xu, Xiaoxing Ma, and Yue Li. 2023. The Essence of
Verilog: A Tractable and Tested Operational Semantics for Verilog. Proc. ACM Program. Lang. 7, OOPSLA2 (Oct. 2023),
234-263. doi:10.1145/3622805

[26] Chipsalliance. 2025. Verible: A Suite of SystemVerilog Developer Tools, including a Parser, Style-linter, Formatter and
Language Server. https://github.com/chipsalliance/verible.

— —
o 3
[t

—
—_
oo

—

—
—
'

fla

(15

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1007/978-3-540-76637-7_20
https://doi.org/10.1007/978-3-662-49674-9_38
https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/chiseltest/formal/examples
https://github.com/ucb-bar/chiseltest/tree/v0.5.6/src/test/scala/chiseltest/formal/examples
https://doi.org/10.1109/ieeestd.2024.10458102
https://doi.org/10.1109/ieeestd.2024.10458102
https://github.com/Lampro-Mellon/Quasar/tree/2bc0985afd670d0c9b1b6983b53c3c2b340fcb5a
https://github.com/Lampro-Mellon/Quasar/tree/2bc0985afd670d0c9b1b6983b53c3c2b340fcb5a
https://github.com/scalatest/scalatest
https://www.sifive.com/
https://github.com/epfl-lara/stainless
https://github.com/epfl-lara/stainless
https://github.com/YosysHQ/sby
https://github.com/YosysHQ/yosys
https://github.com/chipsalliance/firrtl/tree/v1.5.6
https://github.com/chipsalliance/firrtl/tree/v1.5.6
https://github.com/chipsalliance/chisel/tree/v3.5.6
https://github.com/chipsalliance/chisel/tree/v3.5.6
https://github.com/chipsalliance/treadle/tree/v1.5.6
https://forums.sifive.com/t/information-on-coreplex-ip-access/105/8
https://forums.sifive.com/t/information-on-coreplex-ip-access/105/8
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1109/ISCAS.1989.100747
https://doi.org/10.1109/MDAT.2021.3063339
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://doi.org/10.1109/VLSID.2016.44
https://doi.org/10.1145/3622805
https://github.com/chipsalliance/verible

ChiSA: Static Analysis for Lightweight Chisel Verification 18:29

[27] Joonwon Choi, Jaewoo Kim, and Jeehoon Kang. 2025. Revamping Verilog Semantics for Foundational Verification.
Proc. ACM Program. Lang. 9, OOPSLA2 (Oct. 2025), 950-977. doi:10.1145/3763084

[28] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hardekopf. 2021. Wire sorts: a language

abstraction for safe hardware composition. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. ACM, Virtual Canada, 175-189. doi:10.1145/3453483.3454037

Cristina Cifuentes, Francois Gauthier, Behnaz Hassanshahi, Padmanabhan Krishnan, and Davin McCall. 2023. The

role of program analysis in security vulnerability detection: Then and now. Computers & Security 135 (Dec. 2023),

103463. doi:10.1016/j.cose.2023.103463

[30] Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo Zuliani. 2012. Model Checking and the State Explosion
Problem. In Tools for Practical Software Verification, Bertrand Meyer and Martin Nordio (Eds.). Vol. 7682. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1-30. doi:10.1007/978-3-642-35746-6_1 Series Title: Lecture Notes in Computer
Science.

[31] Chisel Community. 2025. How do I override the implicit clock or reset within a Module? https://www.chisel-
lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module.

[32] Chisel Community. 2025. Projects Using Chisel/FIRRTL. https://www.chisel-lang.org/community.

[33] Intel Corporation. 2025. Intel®Quartus®Prime Standard Edition User Guide. https://www.intel.com/content/www/

us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html.

Perforce Corporation. 2025. How Static Analysis Automates Agile Software Development. https://www.perforce.

com/resources/kw/static-analysis-automates-agile-software-development.

[35] Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2025. ChiSA: Static Analysis for Lightweight Chisel
Verification (Artifact). doi:10.5281/zenodo.17700253

[36] Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li. 2025. ChiSA: Static Analysis for Lightweight Chisel
Verification (Supplementary Material). doi:10.5281/zenodo.17623491

[37] Hans Jakob Damsgaard, Aleksandr Ometov, and Jari Nurmi. 2023. Verification of Approximate Hardware Designs
with ChiselVerify. In 2023 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, Aalborg, Denmark, 1-7.
doi:10.1109/NorCAS58970.2023.10305474

[38] Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: an efficient SMT solver. In 2008 Tools and Algorithms for
Construction and Analysis of Systems. Springer, Berlin, Heidelberg, 337-340. https://www.microsoft.com/en-
us/research/publication/z3-an-efficient-smt-solver/

[39] Shuwen Deng, Doguhan Gimiisoglu, Wenjie Xiong, Y. Serhan Gener, Onur Demir, and Jakub Szefer. 2017. SecChisel:
Language and Tool for Practical and Scalable Security Verification of Security-Aware Hardware Architectures.
https://eprint.iacr.org/2017/193 Published: Cryptology ePrint Archive, Paper 2017/193.

[40] Shuwen Deng, Doguhan Gimiisoglu, Wenjie Xiong, Sercan Sari, Y. Serhan Gener, Corine Lu, Onur Demir, and Jakub

Szefer. 2019. SecChisel Framework for Security Verification of Secure Processor Architectures. In Proceedings of the

8th International Workshop on Hardware and Architectural Support for Security and Privacy. ACM, Phoenix AZ USA,

1-8. doi:10.1145/3337167.3337174

Andrew Dobis, Hans Jakob Damsgaard, Enrico Tolotto, Kasper Hesse, Tjark Petersen, and Martin Schoeberl. 2022.

Enabling Coverage-Based Verification in Chisel. In 2022 IEEE European Test Symposium (ETS). IEEE, Barcelona, Spain,

1-6. doi:10.1109/ETS54262.2022.9810435

Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper Juul Hesse Rasmussen, Enrico Tolotto,

Simon Thye Andersen, Richard Lin, and Martin Schoeberl. 2023. Verification of Chisel Hardware Designs with

ChiselVerify. Microprocessors and Microsystems 96 (Feb. 2023), 104737. doi:10.1016/j.micpro.2022.104737

[43] Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye

Andersen, Richard Lin, and Martin Schoeberl. 2021. ChiselVerify: An Open-Source Hardware Verification Library

for Chisel and Scala. In 2021 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, Oslo, Norway, 1-7.

d0i:10.1109/NorCAS53631.2021.9599869

Amelia Dobis, Tjark Petersen, and Martin Schoeberl. 2021. Towards Functional Coverage-Driven Fuzzing for Chisel

Designs. (Nov. 2021). doi:10.3929/ETHZ-B-000539444 Medium: application/pdf,4 p. accepted version Publisher:

[object Object].

EETimes. 2016. A Match Made in Chip Verification Heaven: Simulation and Emulation. https://www.eetimes.com/a-

match-made-in-chip-verification-heaven-simulation-and-emulation/.

Weizhi Feng, Yicheng Liu, Jiaxiang Liu, David N Jansen, Lijun Zhang, and Zhilin Wu. 2024. Formally Verifying

Arithmetic Chisel Designs for All Bit Widths at Once. In Proceedings of the 61st ACM/IEEE Design Automation

Conference. ACM, San Francisco CA USA, 1-6. doi:10.1145/3649329.3657311

Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. 2018. HyperFlow: A Processor Architecture

for Nonmalleable, Timing-Safe Information Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, Toronto Canada, 1583-1600. doi:10.1145/3243734.3243743

[29

-

(34

[l

[41

—

(42

—

(44

flanr)

(45

—

(46

—

(47

[

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3763084
https://doi.org/10.1145/3453483.3454037
https://doi.org/10.1016/j.cose.2023.103463
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.chisel-lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module
https://www.chisel-lang.org/docs/cookbooks/cookbook#how-do-i-override-the-implicit-clock-or-reset-within-a-module
https://www.chisel-lang.org/community
https://www.intel.com/content/www/us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html
https://www.intel.com/content/www/us/en/docs/programmable/683323/18-1/avoid-combinational-loops.html
https://www.perforce.com/resources/kw/static-analysis-automates-agile-software-development
https://www.perforce.com/resources/kw/static-analysis-automates-agile-software-development
https://doi.org/10.5281/zenodo.17700253
https://doi.org/10.5281/zenodo.17623491
https://doi.org/10.1109/NorCAS58970.2023.10305474
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://eprint.iacr.org/2017/193
https://doi.org/10.1145/3337167.3337174
https://doi.org/10.1109/ETS54262.2022.9810435
https://doi.org/10.1016/j.micpro.2022.104737
https://doi.org/10.1109/NorCAS53631.2021.9599869
https://doi.org/10.3929/ETHZ-B-000539444
https://www.eetimes.com/a-match-made-in-chip-verification-heaven-simulation-and-emulation/
https://www.eetimes.com/a-match-made-in-chip-verification-heaven-simulation-and-emulation/
https://doi.org/10.1145/3649329.3657311
https://doi.org/10.1145/3243734.3243743

18:30

(48]

(49]

(50]

[51]

(54]
(55]
[56]

(57]

[64]

[65]
[66]

[67]

[68]

[69]

Proc.

Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

Bruno Ferres, Olivier Muller, and Frédéric Rousseau. 2023. A Chisel Framework for Flexible Design Space Exploration
through a Functional Approach. ACM Trans. Des. Autom. Electron. Syst. 28, 4 (July 2023), 1-31. doi:10.1145/3590769
Harry Foster. 2024. IC/ASIC Functional Verification Trend Report - 2024. https://verificationacademy.com/topics/
planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-
study/.

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb,
Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley,
Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning
Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
San Francisco, CA, USA, 769-774. doi:10.1109/DAC18074.2021.9586216

Youstina M. Halim, Khaled A. Ismail, Mohamed A. Abd El Ghany, Sameh A. Ibrahim, and Youssef M. Halim. 2022.
Reinforcement-Learning Based Method for Accelerating Functional Coverage Closure of Traffic Light Controller
Dynamic Digital Design. In 2022 32nd International Conference on Computer Theory and Applications (ICCTA). IEEE,
Alexandria, Egypt, 44-50. doi:10.1109/ICCTA58027.2022.10206069

Naoya Hatta. 2025. SVLint: SystemVerilog Linter. https://github.com/dalance/svlint.

John L. Hennessy and David A. Patterson. 2018. A new golden age for computer architecture: Domain-specific
hardware/software co-design, enhanced security, open instruction sets, and agile chip development. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). 27-29. doi:10.1109/ISCA.2018.00011

John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2
(Jan. 2019), 48-60. doi:10.1145/3282307 Place: New York, NY, USA Publisher: Association for Computing Machinery.
Jim Hogan. 2013. The Science of SW Simulators, Acceleration, Prototyping, Emulation. https://www.deepchip.com/
items/0522-02.html.

Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2022. Hardware Information Flow Tracking. ACM Comput. Surv.
54, 4 (May 2022), 1-39. doi:10.1145/3447867

Charles Hymans. 2002. Checking Safety Properties of Behavioral VHDL Descriptions by Abstract Interpretation.
In Static Analysis (Berlin, Heidelberg), Manuel V. Hermenegildo and German Puebla (Eds.). Springer, 444-460.
doi:10.1007/3-540-45789-5_31

Charles Hymans. 2003. Design and Implementation of an Abstract Interpreter for VHDL. In Correct Hardware
Design and Verification Methods (Berlin, Heidelberg), Daniel Geist and Enrico Tronci (Eds.). Springer, 263-269.
doi:10.1007/978-3-540-39724-3_23

Charles Hymans. 2005. Verification of an Error Correcting Code by Abstract Interpretation. In Verification, Model
Checking, and Abstract Interpretation (Berlin, Heidelberg), Radhia Cousot (Ed.). Springer, 330-345. doi:10.1007/978-3-
540-30579-8_22

Vincent Jampietro. 2022. Formal Semantics of H-VHDL. (May 2022). https://hal.science/hal-03664656

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (May 2001), 396-450. doi:10.1145/503502.503505

SiFive Inc. 2025. SiFive TileLink Specification. https://www.sifive.com/documentation/tilelink/tilelink-spec/.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu Kim, Colin Schmidt,
Chick Markley, Jim Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction
languages, compiler frameworks, and transformations. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, Irvine, CA, 209-216. doi:10.1109/ICCAD.2017.8203780

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Static Analysis, Jens
Palsberg and Zhendong Su (Eds.). Vol. 5673. Springer Berlin Heidelberg, Berlin, Heidelberg, 238-255. doi:10.1007/978-
3-642-03237-0_17 Series Title: Lecture Notes in Computer Science.

Sid Katzen. 2001. The PIC16F84 Microcontroller. In The Quintessential PIC Microcontroller, A. J. Sammes (Ed.). Springer
London, London, 77-104. doi:10.1007/978-1-4471-3704-7_4 Series Title: Computer Communications and Networks.
Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. 2017. Data Flow Analysis: Theory and Practice (1 ed.). CRC
Press. doi:10.1201/9780849332517

Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach, and Krste Asanovic. 2018.
DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across Trillions of Cycles. In 2018
28th International Conference on Field Programmable Logic and Applications (FPL). IEEE, Dublin, Ireland, 76-764.
doi:10.1109/FPL.2018.00021

Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yunsup Lee, Jonathan Bachrach,
and Krste Asanovicc. 2016. Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). IEEE, Seoul, South Korea, 128-139.
doi:10.1109/ISCA.2016.21

Stephen Cole Kleene. 1952. Introduction to Metamathematics. North-Holland Publishing Company, Amsterdam.

ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3590769
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1109/ICCTA58027.2022.10206069
https://github.com/dalance/svlint
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.1145/3282307
https://www.deepchip.com/items/0522-02.html
https://www.deepchip.com/items/0522-02.html
https://doi.org/10.1145/3447867
https://doi.org/10.1007/3-540-45789-5_31
https://doi.org/10.1007/978-3-540-39724-3_23
https://doi.org/10.1007/978-3-540-30579-8_22
https://doi.org/10.1007/978-3-540-30579-8_22
https://hal.science/hal-03664656
https://doi.org/10.1145/503502.503505
https://www.sifive.com/documentation/tilelink/tilelink-spec/
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-1-4471-3704-7_4
https://doi.org/10.1201/9780849332517
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/ISCA.2016.21

ChiSA: Static Analysis for Lightweight Chisel Verification 18:31

[70] Anish Krishnakumar, Umit Ogras, Radu Marculescu, Mike Kishinevsky, and Trevor Mudge. 2023. Domain-Specific
Architectures: Research Problems and Promising Approaches. ACM Trans. Embed. Comput. Syst. 22, 2 (March 2023),
1-26. doi:10.1145/3563946

Shriram Krishnamurthi. 2015. Desugaring in Practice: Opportunities and Challenges. In Proceedings of the 2015

Workshop on Partial Evaluation and Program Manipulation (Mumbai, India) (PEPM ’15). Association for Computing

Machinery, New York, NY, USA, 1-2. doi:10.1145/2678015.2678016

Shriram Krishnamurthi, Benjamin S. Lerner, and Liam Elberty. 2019. The Next 700 Semantics: A Research Challenge.

In 3rd Summit on Advances in Programming Languages, SNAPL 2019, May 16-17, 2019, Providence, RI, USA (LIPIcs,

Vol. 136), Benjamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

fiir Informatik, 9:1-9:14. doi:10.4230/LIPIcs.SNAPL.2019.9

Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2021. Open-Source Formal Verification for Chisel. (2021).

Chris Lattner. 2025. CIRCT: Circuit IR Compilers and Tools. https://circt.llvm.org/.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana

Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain

Specific Computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE,

Seoul, Korea (South), 2-14. doi:10.1109/CG051591.2021.9370308

Yunsup Lee, Albert Ou, Colin Schmidt, Sagar Karandikar, Howard Mao, and Krste Asanovi¢. 2015. The Hwacha

Microarchitecture Manual, Version 3.8.1. Technical Report UCB/EECS-2015-263. http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2015/EECS-2015-263.html

Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli, Jachwa Kwak, Ruzica Jevtic,

Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Rimas Avizienis, Brian Richards, Jonathan Bachrach, David Patterson,

Elad Alon, Bora Nikolic, and Krste Asanovic. 2016. An Agile Approach to Building RISC-V Microprocessors. IEEE

Micro 36, 2 (March 2016), 8-20. doi:10.1109/MM.2016.11

[78] Harry Foster Lionel Bening. 2002. RTL Logic Simulation. Kluwer Academic Publishers, Boston, 69-101. doi:10.1007/0-

306-47631-2_5

Andreas Lo6w. 2025. The Simulation Semantics of Synthesisable Verilog. Proc. ACM Program. Lang. 9, OOPSLA1

(April 2025), 1295-1320. doi:10.1145/3720484

Raffaele Meloni, H. Peter Hofstee, and Zaid Al-Ars. 2024. Tywaves: A Typed Waveform Viewer for Chisel. In 2024 IEEE

Nordic Circuits and Systems Conference (NorCAS). IEEE, Lund, Sweden, 1-6. doi:10.1109/NorCAS64408.2024.10752465

Anders Moller and Michael I. Schwartzbach. 2018. Static Program Analysis. 47-48 pages. http://cs.au.dk/~amoeller/spa/

Department of Computer Science, Aarhus University.

Anders Meller and Michael I. Schwartzbach. 2018. Static Program Analysis. 79-87 pages. http://cs.au.dk/~amoeller/spa/

Department of Computer Science, Aarhus University.

[83] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. 2016. PKCS #1: RSA Cryptography Specifications Version 2.2. Technical
Report RFC8017. RFC Editor. RFC8017 pages. doi:10.17487/RFC8017

[84] R Mukherjee. 2018. Precise abstract interpretation of hardware designs. PhD Thesis. University of Oxford.

[85] National Institute of Standards and Technology (US). 2023. Advanced Encryption Standard (AES). Technical Report
NIST FIPS 197-upd1. National Institute of Standards and Technology (U.S.), Washington, D.C. NIST FIPS 197-upd1
pages. doi:10.6028/NIST.FIPS.197-upd1

[86] M. H. A. Newman. 1942. On Theories with a Combinatorial Definition of "Equivalence". Annals of Mathematics 43, 2

(1942), 223-243. http://www.jstor.org/stable/1968867

Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. In Correct System Design, Gerhard Goos,

Juris Hartmanis, Jan Van Leeuwen, Ernst-Ridiger Olderog, and Bernhard Steffen (Eds.). Vol. 1710. Springer Berlin

Heidelberg, Berlin, Heidelberg, 114-136. doi:10.1007/3-540-48092-7_6 Series Title: Lecture Notes in Computer

Science.

[88] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. 2018. Btor2 , BtorMC and Boolector 3.0. In Computer

Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Vol. 10981. Springer International Publishing,

Cham, 587-595. do0i:10.1007/978-3-319-96145-3_32 Series Title: Lecture Notes in Computer Science.

Rachit Nigam, Pedro Henrique Azevedo De Amorim, and Adrian Sampson. 2023. Modular Hardware Design with

Timeline Types. Proc. ACM Program. Lang. 7, PLDI (June 2023), 343-367. doi:10.1145/3591234

Rachit Nigam, Ethan Gabizon, Edmund Lam, and Adrian Sampson. 2024. Correct and Compositional Hardware

Generators. doi:10.48550/ARXIV.2401.02570 Version Number: 1.

John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2021. An Empirical Study on Type Annotations: Accuracy,

Speed, and Suggestion Effectiveness. ACM Trans. Softw. Eng. Methodol. 30, 2 (April 2021), 1-29. doi:10.1145/3439775

John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and Lambros Karkazis. 2018. Assessing the type annotation

burden. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM,

Montpellier France, 190-201. doi:10.1145/3238147.3238173

[71

—

(72

—

—_ —,—
N
gl o W
=

(76

—

(77

—

— — —
o] [eld] ~
—_ =] O
— — —

—
0
Do

—

,—‘
ole]
3

ot

(89

-

[90

=

[91

—

[92

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3563946
https://doi.org/10.1145/2678015.2678016
https://doi.org/10.4230/LIPIcs.SNAPL.2019.9
https://circt.llvm.org/
https://doi.org/10.1109/CGO51591.2021.9370308
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1007/0-306-47631-2_5
https://doi.org/10.1007/0-306-47631-2_5
https://doi.org/10.1145/3720484
https://doi.org/10.1109/NorCAS64408.2024.10752465
http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/
https://doi.org/10.17487/RFC8017
https://doi.org/10.6028/NIST.FIPS.197-upd1
http://www.jstor.org/stable/1968867
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1145/3591234
https://doi.org/10.48550/ARXIV.2401.02570
https://doi.org/10.1145/3439775
https://doi.org/10.1145/3238147.3238173

18:32 Jiacai Cui, Qinlin Chen, Zhongsheng Zhan, Tian Tan, and Yue Li

[93] Yan Pi, Hongji Zou, Tun Li, Wanxia Qu, and Hai Wan. 2023. ESFO: Equality Saturation for FIRRTL Optimization. In
Proceedings of the Great Lakes Symposium on VLSI 2023. ACM, Knoxville TN USA, 581-586. doi:10.1145/3583781.3590239

[94] Joe Gibbs Politz, Matthew]. Carroll, Benjamin S. Lerner, Justin Pombrio, and Shriram Krishnamurthi. 2012. A
Tested Semantics for Getters, Setters, and Eval in JavaScript. In Proceedings of the 8th Symposium on Dynamic
Languages (Tucson, Arizona, USA) (DLS ’12). Association for Computing Machinery, New York, NY, USA, 1-16.
doi:10.1145/2384577.2384579

[95] Michael Popoloski. 2025. Slang: SystemVerilog Language Services. https://github.com/MikePopoloski/slang.

[96] Md Imtiaz Rashid and B. Carrion Schaefer. 2024. VeriPy: A Python-Powered Framework for Parsing Verilog HDL and
High-Level Behavioral Analysis of Hardware. In 2024 IEEE 17th Dallas Circuits and Systems Conference (DCAS). IEEE,
Richardson, TX, USA, 1-6. doi:10.1109/DCAS61159.2024.10539889

[97] Michael Reif, Florian Kiibler, Dominik Helm, Ben Hermann, Michael Eichberg, and Mira Mezini. 2020. TACAL: an

intermediate representation based on abstract interpretation. In Proceedings of the 9th ACM SIGPLAN International

Workshop on the State Of the Art in Program Analysis. ACM, London UK, 2-7. doi:10.1145/3394451.3397204

Berkeley Architecture Research. 2023. IceNet: A library of Chisel designs related to networking. https://chipyard.

readthedocs.io/en/1.10.0/Generators/IceNet.html.

Berkeley Architecture Research. 2023. RiscvMini: Simple RISC-V 3-stage Pipeline in Chisel. https://github.com/ucb-

bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802.

[100] Berkeley Architecture Research. 2023. Sodor Processor Collection: Educational Microarchitectures for Risc-V ISA.

https://github.com/ucb-bar/riscv-sodor/tree/sodor-old.

Berkeley Architecture Research. 2025. ChiselTest: The batteries-included testing and formal verification library for

Chisel-based RTL designs. https://github.com/ucb-bar/chiseltest.

Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. 2013. On design vulnerability analysis and trust

benchmarks development. In 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE, Asheville, NC,

USA, 471-474. doi:10.1109/ICCD.2013.6657085

Martin Schoeberl. 2025. Digital Design with Chisel. Kindle Direct Publishing. https://github.com/schoeberl/chisel-book

Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and Mark Tehranipoor. 2017. Benchmarking

of Hardware Trojans and Maliciously Affected Circuits. J Hardw Syst Secur 1, 1 (March 2017), 85-102. doi:10.1007/

541635-017-0001-6

Shidong Shen, Yicheng Liu, Lijun Zhang, Fu Song, and Zhilin Wu. 2025. Formal Verification of RISC-V Processor Chisel

Designs. In Dependable Software Engineering. Theories, Tools, and Applications, Timothy Bourke, Liqgian Chen, and

Amir Goharshady (Eds.). Vol. 15469. Springer Nature Singapore, Singapore, 142-160. doi:10.1007/978-981-96-0602-3_8

Series Title: Lecture Notes in Computer Science.

Wilson Snyder. 2025. Verilator. https://veripool.org/verilator.

Synopsys, Inc. 2025. Spyglass Lint. https://www.synopsys.com/verification/static-and-formal-verification/spyglass/

spyglass-lint.html

[108] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware Design Processing Toolkit for Verilog HDL.
In Applied Reconfigurable Computing, Kentaro Sano, Dimitrios Soudris, Michael Hiibner, and Pedro C. Diniz (Eds.).
Vol. 9040. Springer International Publishing, Cham, 451-460. doi:10.1007/978-3-319-16214-0_42 Series Title: Lecture
Notes in Computer Science.

[109] Tian Tan and Yue Li. 2023. Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good
Designs of Classics. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, Seattle WA USA, 1093-1105. doi:10.1145/3597926.3598120

[110] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanovi¢, and David Patterson. 2010. A case for

FAME: FPGA architecture model execution. SSIGARCH Comput. Archit. News 38, 3 (June 2010), 290-301. doi:10.1145/

1816038.1815999

Alfred Tarski. 1955. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific J. Math. 5, 2 (June 1955),

285-309.

[112] Patrick Thomson. 2022. Static analysis. Commun. ACM 65, 1 (Jan. 2022), 50-54. do0i:10.1145/3486592

[113] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware Description Languages: Applying Programming
Language Techniques to Improve Design Productivity. In 3rd Summit on Advances in Programming Languages (SNAPL
2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 136), Benjamin S. Lerner, Rastislav Bodik, and
Shriram Krishnamurthi (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 7:1-7:21.
do0i:10.4230/LIPIcs.SNAPL.2019.7 ISSN: 1868-8969.

[114] Sheng-Hong Wang, Hunter James Coffman, Kenneth Mayer, Sakshi Garg, and Jose Renau. 2023. A Multi-threaded
Fast Hardware Compiler for HDLs. In Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler
Construction. ACM, Montréal QC Canada, 25-36. doi:10.1145/3578360.3580254

[98

[}

[99

[

[101

—

[102

—

[103
[104

[lami i

[105

=

[106
[107

—

[111

O

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3583781.3590239
https://doi.org/10.1145/2384577.2384579
https://github.com/MikePopoloski/slang
https://doi.org/10.1109/DCAS61159.2024.10539889
https://doi.org/10.1145/3394451.3397204
https://chipyard.readthedocs.io/en/1.10.0/Generators/IceNet.html
https://chipyard.readthedocs.io/en/1.10.0/Generators/IceNet.html
https://github.com/ucb-bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802
https://github.com/ucb-bar/riscv-mini/tree/3473cfd8c0ebca6593d3c324209b0f5a7e582802
https://github.com/ucb-bar/riscv-sodor/tree/sodor-old
https://github.com/ucb-bar/chiseltest
https://doi.org/10.1109/ICCD.2013.6657085
https://github.com/schoeberl/chisel-book
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/978-981-96-0602-3_8
https://veripool.org/verilator
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://doi.org/10.1007/978-3-319-16214-0_42
https://doi.org/10.1145/3597926.3598120
https://doi.org/10.1145/1816038.1815999
https://doi.org/10.1145/1816038.1815999
https://doi.org/10.1145/3486592
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://doi.org/10.1145/3578360.3580254

ChiSA: Static Analysis for Lightweight Chisel Verification 18:33

[115] Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. 2022. A Survey on Assertion-based Hardware
Verification. ACM Comput. Surv. 54, 11s (Jan. 2022), 1-33. doi:10.1145/3510578

[116] Remigiusz Wisniewski, Arkadiusz Bukowiec, and Marek Wegrzyn. 2001. Benefits of Hardware Accelerated Simulation.
(June 2001).

[117] Mufan Xiang, Yongjian Li, and Yongxin Zhao. 2023. ChiselFV: A Formal Verification Framework for Chisel. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Antwerp, Belgium, 1-6. doi:10.23919/
DATE56975.2023.10137221

[118] Mufan Xiang, Yongjian Li, and Yongxin Zhao. 2023. RVFC: RISC-V Formal in Chisel. In 2023 International Symposium
of Electronics Design Automation (ISEDA). IEEE, Nanjing, China, 162-167. doi:10.1109/ISEDA59274.2023.10218484

[119] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei
Lin, Tong Liu, Zhigang Liu, Jiazhan Tan, Huagiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang
Zhang, Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dandan
Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun,
and Yungang Bao. 2022. Towards Developing High Performance RISC-V Processors Using Agile Methodology. In
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, Chicago, IL, USA, 1178-1199.
doi:10.1109/MICRO56248.2022.00080

[120] Jones Yeboah and Saheed Popoola. 2023. Efficacy of Static Analysis Tools for Software Defect Detection on Open-
Source Projects. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI).
IEEE, Las Vegas, NV, USA, 1588-1593. do0i:10.1109/CSCI62032.2023.00262

[121] Shizhen Yu, Yifan Dong, Jiuyang Liu, Yong Li, Zhilin Wu, David N. Jansen, and Lijun Zhang. 2022. CHA: Supporting
SVA-Like Assertions in Formal Verification of Chisel Programs (Tool Paper). In Software Engineering and Formal
Methods, Bernd-Holger Schlingloff and Ming Chai (Eds.). Vol. 13550. Springer International Publishing, Cham, 324-331.
d0i:10.1007/978-3-031-17108-6_20 Series Title: Lecture Notes in Computer Science.

[122] Bowen Zhang, Wei Chen, Hung-Chun Chiu, and Charles Zhang. 2024. Unveiling the Power of Intermediate Repre-
sentations for Static Analysis: A Survey. doi:10.48550/ARXIV.2405.12841 Version Number: 1.

[123] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A Hardware Design Language for Timing-
Sensitive Information-Flow Security. SIGPLAN Not. 50, 4 (May 2015), 503-516. doi:10.1145/2775054.2694372

[124] Jerry Zhao, Animesh Agrawal, Borivoje Nikolic, and Krste Asanovic. 2022. Constellation: An Open-Source SoC-
Capable NoC Generator. In 2022 15th IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc).
IEEE, Chicago, IL, USA, 1-7. doi:10.1109/NoCArc57472.2022.9911299

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 18. Publication date: January 2026.

https://doi.org/10.1145/3510578
https://doi.org/10.23919/DATE56975.2023.10137221
https://doi.org/10.23919/DATE56975.2023.10137221
https://doi.org/10.1109/ISEDA59274.2023.10218484
https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/CSCI62032.2023.00262
https://doi.org/10.1007/978-3-031-17108-6_20
https://doi.org/10.48550/ARXIV.2405.12841
https://doi.org/10.1145/2775054.2694372
https://doi.org/10.1109/NoCArc57472.2022.9911299

	Abstract
	1 Introduction
	2 C: The Core Calculus of ChAIR
	2.1 C Informal: Understanding the Essence of Chisel Circuits
	2.2 C Syntax: Circuit (Static) Structure
	2.3 C Semantics: Circuit (Dynamic) Behavior
	2.4 C Properties: Circuit Characteristics

	3 HVFA: Hardware Value Flow Analysis
	3.1 HVFA Problem Formulation
	3.2 Approximate Synchronous Register Behavior: Synchronous Flow Functions
	3.3 Synchronized Fixed-Point Solution for HVFA
	3.4 Soundness and Precision Discussion of HVFA
	3.5 HVFA Instances for Lightweight Chisel Verification

	4 ChiSA: A Proof of Concept
	5 Evaluation
	5.1 RQ1: Hardware Bug Detection — ChiSA vs. Bounded Model Checking
	5.2 RQ2: Hardware Security Analysis — ChiSA vs. Secure Type System

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

