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Prompt engineering techniques are widely used to enhance the generation quality of large language models
(LLMs). However, the long prompts significantly increase inference latency and reduce inference throughput.
Since many prompts share common prefixes, prefix sharing has been proposed to reuse shared prefix KV
caches during inference. Nevertheless, the large number of prefix KV caches and the limited GPU memory
capacity make it impractical to store all prefix KV caches in GPU memory. This limitation necessitates the use
of external memory storage strategies, which often suffer from high I/O overhead and frequent cache misses
with traditional approaches.

To address these challenges, this paper proposes HotPrefix, a hotness-aware KV cache scheduling framework
designed for efficient prefix sharing in LLM inference systems. HotPrefix introduces three core innovations: (1)
Dynamic Hotness Tracking, which dynamically monitors and updates the hotness of prefix tree nodes over
time; (2) Selective KV Cache Admission, which evaluates evicted KV caches from GPU memory, retaining
only high-hotness caches in CPU memory to expand GPU memory capacity and reduce KV cache transfer
overhead; (3)Hotness Promotion, which periodically promotes high-hotness prefix tree KV caches from
CPU memory to GPU memory. This is combined with an efficient pipeline strategy for I/O and computation,
ensuring GPU memory is allocated to the most critical prefixes while masking the I/O overhead associated
with KV cache transmission. These mechanisms significantly improve cache hit rates, reduce inference latency,
and enhance throughput. Implemented in the SGLang framework, HotPrefix reduces inference latency and
increases throughput by up to 2.25× compared with vLLM with prefix sharing enabled. Against SGLang, it
achieves up to 2× latency reduction and throughput increase.
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1 Introduction
Large language models (LLMs) such as GPT-4 [2], LLaMA3 [12], and DeepSeek [6] have achieved
remarkable success across a wide range of applications, including natural language understanding,
reasoning, text generation, and question answering [41, 42, 49]. To further enhance LLM perfor-
mance and adapt them to diverse tasks, prompt engineering [7, 32, 33, 64, 65, 71] has emerged as a
key technique, enabling LLMs to perform effectively with minimal hardware resource costs. By
designing structured and informative prompts, including techniques like few-shot learning [7],
chain-of-thought [56] and retrieval-augmented generation (RAG) [32] that incorporate external
knowledge, users can guide LLMs to address specific tasks with high precision and flexibility.

However, prompt engineering techniques also introduce challenges in inference. A key issue is the
redundant storage of shared prefixes, such as system instructions [28, 39], reusable templates [57, 63],
or RAG retrieved documents [9]. For example, system prompts are shared by all queries in various
LLM applications, such as Claude [4], ChatGPT [44] and Grok [58], and the promopts often exceed
1,000 tokens [28]. For popular benchmarks, like MMLU [21], BBH [51] and CEVAL [23], the chain-
of-thought or few-shot prompts’ average token length can be as long as 723, 567 and 1673, and
each prompt is shared by hundreds of different queries [43]. This duplication results in inefficient
use of GPU memory, limiting space for other data. To address this, prefix sharing [30, 66, 72] has
been proposed to reuse shared KV caches, reducing redundant computations and optimizing GPU
memory utilization.
Existing work has made notable advancements in prefix sharing for LLM inference. vLLM [30]

reserves a fixed set of physical memory blocks for shared prefixes, enabling reuse of prefixes
that align with predefined block sizes. SGlang [72] introduces the RadixAttention mechanism to
optimize memory usage and facilitate flexible prefix sharing, managing memory with a simple
LRU-based eviction policy. However, these methods fail to address several critical problems: (1)
As the number of shared prefixes increases, the limited capacity of GPU high-bandwidth memory
(HBM) makes it impossible to store all prefix KV caches. For example, GPT-3 requires approximately
4.5 MB of KV cache per token [17]. With a context length of 1024 and batch size of 16, the KV
cache demand exceeds 73 GB. (2) Current methods do not account for the dynamic nature of user
requests, where reuse probabilities of prefixes can vary significantly. Studies [25] have shown that
prefix reuse probabilities follow a long-tail distribution, with a small subset of high-hotness prefixes
responsible for the majority of requests, while low-hotness prefixes exhibit unpredictable access
patterns, making static caching strategies inefficient. (3) They fail to efficiently utilize abundant CPU
memory for storing high-hotness prefixes while ensuring that KV cache transfers and computations
are overlapped to minimize performance disruptions. As a result, high-hotness prefixes are often
evicted prematurely, leading to frequent recomputation and suboptimal inference performance.

1.1 Challenges
As discussed above, developing an efficient KV cache management framework that optimizes the
locality of prefix KV caches, combined with a hotness-aware KV cache scheduling strategy, to
improve latency and throughput presents several significant challenges.
Challenge I: Effective cache scheduling relies on dynamically tracking the hotness of prefix

tree nodes, which is challenging due to the constantly changing access patterns during inference.
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Achieving accurate tracking, low overhead, and real-time updates for prefix hotness simultaneously
is particularly difficult, as these objectives often conflict with each other. Without effectively balanc-
ing these factors, the system risks introducing significant overhead, which can degrade inference
performance. Therefore, designing an efficient mechanism to track prefix hotness dynamically and
with minimal cost remains a key challenge.

Challenge II: Offloading KV caches from GPUmemory to host memory is crucial for overcoming
the limited capacity of GPU memory. However, this process incurs substantial I/O overhead,
as frequent migrations can create bottlenecks, particularly in large-scale or dynamic inference
workloads. For example, when SGLang runs MMLU benchmark and simply evicts redundant KV
caches fromGPU to CPUwith Llama-2 13Bmodel and batch size 8, the total inference latency is 2138
seconds and the offload time is 1200 seconds in our experiments, which is prohibitively expensive
and makes this approach impractical for production deployment. Therefore, naive strategies that
indiscriminately offload all KV caches to host memory exacerbate this problem, leading to degraded
system performance.

Challenge III: Given the limited capacity of GPUmemory, it is critical to ensure that it is reserved
for high-hotness KV caches that are essential for ongoing inference tasks. Existing methods [30, 72]
often fail to effectively manage GPU memory, resulting in frequent eviction of high-hotness caches
in favor of low-hotness ones. This inefficiency reduces cache hit rates and increases recomputation,
ultimately degrading inference latency and throughput.

1.2 Contributions
To address the challenges outlined above and improve inference latency and throughput, this paper
proposes HotPrefix, a novel hotness-aware KV cache scheduling mechanism designed to maximize
the reuse of prefix KV caches during LLM inference. HotPrefix leverages GPU-host memory
collaboration and dynamic cache management to efficiently allocate limited memory resources,
prioritizing high-hotness prefix KV caches for storage in GPU memory. By significantly enhancing
the reuse of prefix KV caches, HotPrefix improves overall inference performance. Specifically, the
key contributions of this work are as follows.

To address Challenge I, this paper introduces a Dynamic Hotness Tracking(§ 3.2) mechanism
that monitors the hotness of each prefix tree node in real time, allowing it to quickly adapt to
changes in access patterns. By continuously updating hotness information, HotPrefix ensures that
cache management decisions are based on accurate, up-to-date metrics, prioritizing high-hotness
prefixes for storage in GPU memory and improving overall cache performance.

To tackle Challenge II, HotPrefix incorporates a Selective KV Cache Admission(§ 3.3) strategy
coupled with a Hotness-Aware Eviction Policy. The eviction policy removes KV caches with the
lowest reuse probability first, optimizing GPU memory usage. Meanwhile, the selective admission
strategy evaluates the hotness of evicted caches and only migrates high-hotness KV caches to host
memory, discarding lower-hotness ones. This dual optimization minimizes unnecessary transfers,
ensuring that critical KV caches remain accessible, significantly reducing I/O overhead while
maintaining high inference performance.
To address Challenge III, we employ a Hotness Promotion(§ 3.4) strategy to asynchronously

transfer shallow-depth high-hotness KV caches from host memory to GPU memory. This prioritizes
the most important caches for storage in GPU memory. To minimize the latency of KV cache
transmission, HotPrefix pipelines these transfers with ongoing GPU computation during the
decoding phase, where prefix KV caches are rarely reused. This alignment ensures that data
transmission and computation do not interfere with each other, reducing disruption to inference
performance while improving GPU memory utilization.
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Together with the above technology, HotPrefix is implemented in the SGLang, and we evaluate
it on various datasets and representative LLMs. Extensive experimental results demonstrate that
HotPrefix significantly improves performance, reducing inference latency by up to 2.25× and
increasing throughput by up to 1.91× compared to vLLM with prefix sharing enabled. Compared
to SGLang, HotPrefix achieves up to a 2× reduction in latency and a 1.64× increase in throughput.

2 Background and Motivation
This section first introduces the fundamentals of large language models( § 2.1). Then we present the
process of generative inference and how KV cache works(§ 2.2). Finally, we discuss the challenges
faced in prefix sharing inference systems and opportunities to deal with them.

2.1 Large Language Models
Large language models (LLMs) have emerged as a foundational technology in natural language
processing, excelling in generative tasks such as text generation, translation, and question answer-
ing. These models are predominantly based on the Transformer [20, 55] architecture, which has
established itself as the de facto standard for LLMs such as GPT [44] and LLaMA [53, 54] due to its
scalability and its ability to effectively model complex sequence dependencies.
At the core of the Transformer architecture is a stack of 𝑙 transformer layers, each comprising

two main components: self-attention and the feed-forward network (FFN). During inference, LLMs
process input prompts as token sequences 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑠 ]. Each token is projected using three
learned weight matrices,𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 , to produce the Query (𝑄), Key (𝐾 ) and Value (𝑉 ) matrices.
Self-attention is computed as:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑𝑘

)
𝑉 (1)

Here, 𝑄 , 𝐾 , and 𝑉 are matrices derived from input, reshaped to dimensions 𝐻 × 𝑁 × 𝑑 , where 𝐻 is
the number of attention heads, 𝑁 is the sequence length, and 𝑑 is the head dimension such that
𝐷 = 𝐻 × 𝑑 . This mechanism dynamically adjusts the weight of each token in the context of all
others, allowing the model to effectively capture long-range dependencies.
After the self-attention phase, the outputs are passed through a feed-forward network, which

comprises two fully connected layers with an activation function, such as GeLU, applied between
them. The FFN enhances the model’s ability to learn non-linear representations. Residual connec-
tions and layer normalization are employed to stabilize training and improve convergence. Notably,
the output dimensions of each Transformer layer match its input dimensions, enabling seamless
stacking of layers.

2.2 Generative Inference and KV Caching
Generative inference in large language models (LLMs) typically consists of two sequential stages:
the prefill stage and the decoding stage. These stages work together to process input prompts and
generate relevant text in an autoregressive manner.

Prefill Stage: The prefill stage processes the input prompt, 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑠 ], and computes a
summary of its context. During this phase, the model generates the key (𝐾 ) and value (𝑉 ) tensors
for all tokens in the input sequence, which are stored as the KV cache. This cache encapsulates the
relationships among tokens in the input prompt and serves as the foundation for the subsequent
decoding stage. The prefill stage ends with the generation of a single token, 𝑥𝑠+1, which serves as
the initial input for the decoding phase.
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Decoding Stage: The decoding stage generates tokens iteratively, one at a time. At each iteration
𝑖 , the model processes the token 𝑥𝑠+𝑖 along with the KV cache accumulated during the prefill stage
and previous decoding iterations. This stage involves the following two key steps:
• Updating the KV Cache: The keys and values of the current token are computed and
appended to the existing KV cache, which grows incrementally. At the 𝑖-th iteration, the
updated KV cache has dimensions 𝐻 × (𝑁 + 𝑖) ×𝑑 , where 𝐻 is the number of attention heads,
𝑁 is the length of the input prompt, and 𝑑 is the head dimension.
• Generating the Next Token:Using the updated KV cache, the model computes the attention
scores for the current token based on all previous tokens. The next token, 𝑥𝑠+𝑖+1, is then
generated and passed to the next iteration.

Unlike the prefill stage, the decoding stage must operate sequentially due to its dependency on
the output of the previous iteration.
Reusable KV Cache: The KV cache is a crucial component in generative inference, as it

significantly reduces redundant computation. During the decoding phase, all previously computed
𝐾 and 𝑉 tensors are reused to compute self-attention for new tokens. Without this mechanism, the
model would need to recompute keys and values for all prior tokens at every iteration, resulting
in prohibitive computational overhead. However, the KV cache introduces challenges due to its
large memory footprint. For instance, GPT-3 generates a KV cache of approximately 4.5MB per
token [17], and its size grows linearly with the number of tokens in a session.
Prefix Sharing: Prefix sharing is an optimization technique primarily used during the prefill

stage to reduce redundant computation and memory usage [19, 25, 66, 72]. In scenarios where
multiple requests share the same input prompt prefix, the KV cache for the shared prefix is computed
only once and reused across all requests. This eliminates the need to recompute the keys (𝐾 ) and
values (𝑉 ) for the common prefix, significantly enhancing the efficiency of the prefill stage.

2.3 Motivation and Limitations of SOTAs
Opportunities for Reusing KV Caches: A significant portion of input prefixes in LLM inference
are reusable [66], presenting an opportunity to reduce redundant computation through KV cache
reuse. In many LLM-based applications, such as chatbots, document analysis, and few-shot learning,
prefixes often include system instructions, reusable templates, or shared context.

For example, in multi-tenant architectures, system prompts are shared across multiple requests
and frequently contain detailed instructions or examples to guide the model [19]. In ChatGPT-
like applications, a single system prompt can exceed 1,700 tokens when multiple plugins are
activated [66], and all requests share this same prompt. Additionally, in long-context applications
such as legal analysis [10], healthcare [50], and education [47], documents from a common pool
are often reused across prompts. These redundancies create a clear opportunity for KV cache reuse,
eliminating the need to recompute keys and values for identical prefixes during inference.
Insufficient GPU Memory:While GPUs excel in computation, their limited memory capacity
poses a significant challenge for caching large-scale prefixes [13, 48]. As the number of tasks
and input prompts increases, the KV cache size grows linearly, rapidly consuming available GPU
memory [31]. This issue is particularly pronounced in scenarios with long prefixes or shared
prefixes across multiple requests [25], as the GPU memory must simultaneously accommodate KV
caches for all active requests.

Limited GPU memory not only restricts total storage capacity but also hampers effective caching
of frequently accessed prefixes. Due to memory constraints, high-hotness prefixes that are repeat-
edly reused across requests may be prematurely evicted to make room for new KV caches. This
leads to unnecessary recomputation of keys and values for these prefixes, negating the potential
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benefits of cache reuse. The lack of sufficient memory to cache high-hotness prefixes directly
increases inference latency and reduces throughput. To address these challenges, we focus on
leveraging host memory to expand KV cache storage capacity.
Inefficiency of Simple GPU-Host Collaboration: A naive approach to extending KV cache
capacity is to offload all KV caches evicted from GPU memory to host memory and reload them
back to the GPU when needed. However, this approach is highly impractical due to the significant
overhead it incurs [24].

First, transferring KV caches from GPU memory to host memory results in substantial transmis-
sion overhead [48]. Since KV cache tensors are large and memory bandwidth between the GPU and
host is limited, frequent offloading operations introduce significant delays in the inference process.
Second, reloading KV caches from host memory back to GPU memory when reuse is required is
even more problematic [26]. The time required for this operation often exceeds the time needed to
recompute the keys and values for the same prefixes directly on the GPU. Consequently, relying on
simple GPU-host collaboration can reduce overall efficiency rather than improve it, especially in
scenarios that demand high throughput or low latency performance.
To overcome these limitations, our approach introduces an intelligent KV cache scheduling

strategy. This strategy aims to minimize the overhead of offloading KV caches to host memory
while optimizing cache reuse. Specifically, it prioritizes which KV caches should be retained in
GPU memory and anticipates future cache access patterns. By proactively and asynchronously
preloading high-hotness prefix KV caches from host memory back to the GPU, the strategy ensures
that KV caches with a higher probability of reuse are readily available when needed, thereby
improving overall inference performance.

3 The HotPrefix Design
In this section, we first present the design of HotPrefix(§ 3.1). Then we introduce Dynamic Hotness
Tracking to monitor the hotness of prefix tree nodes(§ 3.2). Next, we present Selective KV Cache
Admission to improve the GPU memory usage and reduce KV cache transfer overhead(§ 3.3). Finally,
we introduce Hotness Promotion to ensure most hot prefix KV caches kept in GPU memory(§ 3.4).

3.1 Overview
To reduce the computational overhead during the prefill stage and improve both end-to-end
inference latency and throughput, this paper proposes an efficient KV cache management and
scheduling mechanism called HotPrefix. HotPrefix maximizes the reuse of previously computed
KV caches from earlier inference queries.

Key Insight: The key insight behind HotPrefix is to utilize the high bandwidth of GPU memory
to store high-hotness prefix KV caches, which are more likely to be reused in the future, thus
reducing the need for prefill computations. HotPrefix then optimizes the sharing of these prefixes,
improving overall system performance.
However, when a new batch of prompts arrives, GPU memory may not have sufficient space

to store all KV caches. In this case, HotPrefix avoids relying on traditional cache replacement
strategies such as LRU, which could lead to higher cache misses and additional I/O for data transfer
between host and GPU memory. Instead, HotPrefix introduces a more sophisticated and effective
data storage and memory management strategy. It selectively offloads high-hotness KV caches that
are more likely to be accessed in the future, while discarding lower-hotness caches. This selective
approach ensures that only the most relevant KV caches are retained in GPU memory, and the
others are transferred to host memory.

Additionally, HotPrefix incorporates a dynamic promotion mechanism to further optimize cache
management. When the hotness of KV caches in host memory significantly exceeds that of those in
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LLM Inference

Hotness tracking (§ 3.2)

GPU HBM

KV Cache WriteKV Cache Read

Selective KV 
Cache Admission (§ 3.3)

Host Memory

Hotness 
Promotion (§ 3.4)

① ①

②

③ ④

KV Cache in GPU HBM KV Cache in Host Memory

The darker the color, the higher the hotness.

Fig. 1. The workflow of HotPrefix.

GPUmemory, HotPrefix removes less relevant caches from the GPU and loads higher-hotness caches
from the host memory. This process ensures that GPU memory always contains the most critical
KV caches, maximizing cache hit rates, reducing inference latency, and improving throughput.

Figure 1 illustrates the workflow of HotPrefix in managing hierarchical memory. The workflow
consists of three core components: (1) Dynamic Hotness Tracking, which monitors and updates
the hotness of prefix tree nodes in real time; (2) Selective KVCacheAdmission, which implements
a hotness-aware eviction policy to determine which KV caches should be offloaded from GPU
memory to host memory based on their hotness and reuse potential; (3) Hotness Promotion,
which prioritizes high-hotness nodes for promotion from host memory to GPU memory. These
components collaboratively address the challenges outlined in Section 1.
To address Challenge I and enable real-time tracking of prefix tree node hotness, HotPrefix

employs a Dynamic Hotness Tracking mechanism. This mechanism records and updates the
hotness of prefix tree nodes during KV cache reads andwrites, providing precise hotness information
for cache management decisions in a low-overhead manner (§ 3.2).
To address Challenge II and reduce the overhead of KV cache transfers between GPU HBM

and host memory while increasing the cache hit ratio, HotPrefix adopts a Selective KV Cache
Admission strategy. This approach offloads only high-hotness KV caches to host memory and
discards low-hotness ones, minimizing data transfer costs and enhancing overall efficiency (§ 3.3).
To address Challenge III and ensure that GPU memory contains the most critical KV caches,

HotPrefix incorporates a Hotness Promotion mechanism. This mechanism prioritizes high-hotness
KV caches with shallower depths for promotion from host memory to GPU memory, thereby
maximizing cache hit rates and reducing inference latency (§ 3.4).

3.2 Dynamic Hotness Tracking
For this part, we first introduce the basis of prefix tree based KV cache orgnization and then present
the design of Dynamic Hotness Tracking in detail.

Figure 2 illustrates how the prefix tree KV caches architecture in HotPrefix where circular nodes
represent KV caches stored in GPU HBM, while square nodes represent KV caches stored in host
memory. We can see that in HotPrefix, KV caches are managed at the granularity of prefix tree
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root

P4P2

In GPU HBM

In Host Memory
P1 P3

P2.2P2.1

P2.2.1 P2.2.2

P4.1

Fig. 2. The basic prefix tree structure of HotPrefix.
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Fig. 3. The hotness-aware cuckoo filter.

nodes. In prefix tree, the parent node stands for the prefix of the child node. For example, in figure 2
child nodes 𝑃2.1 and 𝑃2.2 share the same prefix 𝑃2.
To identify prefixes KV caches that are most likely to be accessed in the future which can

be previously cached in GPU, HotPrefix introduces a lightweight and accurate mechanism for
dynamically tracking the hotness of prefix tree nodes when facing different llm inference queries.
To achieve this, the paper first introduces an enhanced cuckoo filter structure to record the

hotness information of prefix tree nodes (§ 3.2.1). This structure offers low storage overhead
while maintaining high search efficiency. Second, a dynamic update mechanism is implemented
to continuously track changes in node hotness over time (§ 3.2.2). This mechanism updates the
cuckoo filter dynamically with minimal overhead.

3.2.1 Hotness Recording Data Structure.
Firstly, this paper utilizes a cuckoo filter [14], which is a lightweight and efficient data structure,

to track the hotness of prefix tree nodes. As illustrated in Figure 3, a novel enhanced hotness-aware
cuckoo filter is proposed to facilitate dynamic and efficient management of prefix KV caches.

The hotness-aware cuckoo filter is implemented as a hash table with a contiguous address space,
consisting of n buckets, where each bucket holds four entries. Each entry stores metadata for a
prefix tree node: fingerprint, clock, frequency, and depth. Fingerprint is a compact identifier that
enables efficient storage and quick lookup. Clock indicates the time elapsed since the node was
loaded into the GPU HBM, with higher values representing more recent entries. Frequency captures
the access frequency of the node, reflecting its hotness and potential for reuse. Depth records the
node’s position in the prefix tree, providing structural context for cache management decisions.

Specifically, for KV cache insertion, when a new node𝑚 is generated in the prefix tree, the tokens
from the root to𝑚 are extracted as its unique identifier, denoted as 𝑥 in Equation 2. Equation 2 gets
the fingerprint of 𝑥 and Equation 3 and 4 get possible space for storing 𝑥 ’s information. Therefore,
using Equations 2 to 4, the fingerprint 𝑓 of the node, along with its two candidate buckets 𝑏1 and 𝑏2
in the cuckoo filter, can be computed. The hash function in 3 and 4 is MurmurHash [5]. The slots
in buckets 𝑏1 and 𝑏2 are then examined. If an empty slot is found, the fingerprint 𝑓 of node𝑚 is
stored in that slot, with its clock value initialized to the predefined𝑚𝑎𝑥_𝑎𝑔𝑒 , its frequency set to 1,
and its depth recorded as the node’s depth in the prefix tree at the current moment. The𝑚𝑎𝑥_𝑎𝑔𝑒
is the maximum value of clock value.

𝑓 = fingerprint (𝑥), (2)
𝑏1 = hash(𝑓 ), (3)
𝑏2 = 𝑏1 ⊕ hash(𝑓 ). (4)
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If both buckets 𝑏1 and 𝑏2 are full, one of them is randomly selected, and a random slot within the
selected bucket is chosen. The information of the node corresponding to that slot, denoted as node
𝑛, is then relocated to its alternate bucket 𝑏3, calculated using Equation 4. If 𝑏3 has an empty slot,
the information of node 𝑛 is moved to that slot, freeing its original slot to store the information of
node𝑚. However, if 𝑏3 is full, the same procedure is applied iteratively until an empty slot is found.

If the maximum number of iterations is reached without finding an empty slot, the insertion fails,
indicating insufficient space in cuckoo filter. If failure, some unused entries may be shuffled to host
memory to free up space for new insertions. However, such insertion failures are highly unlikely
for two reasons. First, the cuckoo filter is a compact data structure capable of storing information
for tens of thousands of nodes while requiring only a few kilobytes of memory [14]. Second, the
cuckoo filter is stored in host memory, which provides sufficient space to accommodate all entries.

3.2.2 Hotness Updating Mechanism.
When handling new LLM queries, HotPrefix updates the hotness of nodes in the cuckoo filter

through two steps:
• Step 1:When a node𝑚 in the prefix tree is reused, the tokens from𝑚 to the root are collected
to form 𝑥 , as defined in Equation 2.
• Step 2: A periodic aging mechanism is designed to decrease the clock values of all entries in
the cuckoo filter.

For Step 1, using Equations 2 to 4, the buckets 𝑏1 and 𝑏2 in the cuckoo filter that store the
information of node𝑚 are identified. Based on the insertion process outlined in Section 3.2.1, it is
guaranteed that one of these buckets contains the metadata of node𝑚. Furthermore, by traversing
𝑏1 and 𝑏2, the metadata of node𝑚 is located, its frequency is increased by 1, and its clock value is
reset to the predefined𝑚𝑎𝑥_𝑎𝑔𝑒 . For example, in Figure 4, ’C’ represents the clock value and ’F’
represents the frequency value, with𝑚𝑎𝑥_𝑎𝑔𝑒 set to 15. After reusing the node on the GPU, whose
clock is 9 and frequency is 5, HotPrefix will update its clock to 15 and set its frequency to 6.

root

C=12
F=10

In GPU HBM

In Host Memory

C=8
F=12

C=9
F=5

C=7
F=5

C=3
F=2

C=1
F=2

root

C=12
F=10

C=8
F=12

C=15
F=6

C=7
F=5

C=3
F=2

C=1
F=2

root

C=11
F=10

C=7
F=12

C=14
F=6

C=6
F=5

C=2
F=2

C=0
F=2

AgingReuse

Fig. 4. The hotness updating strategy of hotness-aware cuckoo filter.

For Step 2, after a fixed number of user requests have been processed, the thread traverses the
entire cuckoo filter and decrements the clock value of every entry by 1. For example, in Figure 4,
after aging, the clock value of all the nodes in the prefix tree is reduced by 1. If a node’s clock value
reaches 0, indicating it has not been reused for a long time, the clock value is simply maintained at
0. This aging mechanism gradually reduces the clock values of prefix tree nodes, reflecting their
decreasing recency. By periodically adjusting the clock values, HotPrefix effectively differentiates
recently accessed nodes from less relevant ones.

3.3 Selective KV Cache Admission
HotPrefix leverages GPU HBM and host memory to manage prefix KV caches. However, when HBM
space becomes insufficient, some KV caches must be evicted to host memory for storage. Since
writing KV caches from HBM to host memory incurs significant I/O overhead, and an inefficient
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strategy can result in frequent GPU memory cache misses, it is essential to develop an efficient KV
cache selection strategy to offload less important KV caches from HBM to host memory. To mitigate
this issue and ensure that the evicted KV caches are the least likely to be accessed in the future,
HotPrefix employs a Selective KV Cache Admission policy, which utilizes a hotness-aware
eviction strategy to identify and remove prefix tree nodes and their corresponding KV caches with
the lowest hotness from GPU memory (§ 3.3.1). Subsequently, only KV caches with relatively high
hotness are admitted into host memory, which significantly reduces offloading overhead (§ 3.3.2).

3.3.1 Hotness-aware Eviction Policy.
When encountering the out-of-GPU-memory problem, it becomes necessary to offload some

KV caches from HBM to host memory. Existing approaches typically rely on a simple Least
Recently Used (LRU) strategy for eviction. However, this approach does not account for the unique
hierarchical structure of prefix trees and the varying access frequencies of nodes.
To overcome the limitations of LRU, HotPrefix adopts a hotness-aware replacement strategy.

Unlike traditional LRU, this strategy considers the access characteristics of the prefix tree while
balancing both recency and frequency metrics during eviction decisions. Since ancestor nodes in
the prefix tree are inherently hotter than their descendant nodes, eviction decisions focus solely on
the leaf nodes currently stored in GPU memory. Among these leaf nodes, HotPrefix determines
node priority based on three key metrics: frequency, clock, and length. The priority is defined as:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑐𝑙𝑜𝑐𝑘

𝑙𝑒𝑛𝑔𝑡ℎ
. (5)

With the defined priority, nodes with lower priority are evicted first. In the priority definition
equation, frequency represents the total number of times a node has been accessed, not limited to
the time it has spent in GPU memory. If a node has been frequently swapped in and out of GPU
memory, its overall access frequency remains cumulative. This frequency metric can be directly
retrieved from the hotness record structure in Section 3.2.1. Next, clock reflects the time elapsed
since the node was last loaded into GPU memory, which is also obtained from the hotness record
structure. Finally, length denotes the number of tokens the node contains.
Equation 5 is designed to balance the contributions of long-term usage trends and short-term

recency dynamics. The frequency term directly reflects the cumulative access count of the node,
indicating its overall reuse potential. The clock term captures the node’s recency, while the length
term penalizes larger nodes, ensuring efficient memory utilization. The addition operator combines
these orthogonal factors without disproportionately amplifying either, and the division operator
introduces a proportional adjustment that smooths the impact of node size. This combination
results in a balanced and interpretable prioritization metric for memory management. For example,
for relatively long contexts, like RAG documents with thousands of tokens, Equation 5 helps to
prioritize evicting them from GPU. While for extremely long contexts with tens of thousands
of tokens, the KV caches of them are often stored off-node and fetched to inference servers via
compressed transmission [13]. By leveraging these metrics, the hotness-aware replacement strategy
minimizes the risk of evicting high-hotness nodes, ensuring more efficient GPU memory utilization
and reducing the performance impact of suboptimal evictions.
Algorithm 1 outlines the procedure for evicting prefix KV caches from GPU memory to host

memory when the memory capacity is exceeded. The algorithm first identifies all leaf nodes in the
prefix tree and computes their priorities (lines 3–5). Nodes are then iteratively evicted based on
their priority until the total GPU memory usage falls below the maximum capacity (lines 7–11).
For each evicted node, its memory usage is subtracted from the GPU memory, and it is removed
from both the GPU and the leaf node set. Finally, the incoming node and its KV cache are added to
GPU memory.
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Algorithm 1 Hotness-Aware Eviction Policy for GPU Memory
Require: Prefix tree nodes’ total tokens in GPUmemory𝑁𝐺𝑃𝑈 , maximumGPU capacity for tokens

𝐶𝐺𝑃𝑈 , prefix tree root node 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒
Ensure: Updated GPU memory after eviction
1: Input: Incoming node𝑚, corresponding KV cache
2: while |𝑁𝐺𝑃𝑈 | ≥ 𝐶𝐺𝑃𝑈 do
3: 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠 ← FindLeafNodes(𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒)
4: for each 𝑛 ∈ 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠 do

priority(𝑛) ← frequency(𝑛) + clock(𝑛)
length(𝑛)

5: end for
6: while |𝑁𝐺𝑃𝑈 | ≥ 𝐶𝐺𝑃𝑈 and 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠 not empty do
7: 𝐸𝑣𝑖𝑐𝑡𝑁𝑜𝑑𝑒 ← argmin𝑛∈𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠 (priority(𝑛))
8: Remove 𝐸𝑣𝑖𝑐𝑡𝑁𝑜𝑑𝑒 from GPU
9: Remove 𝐸𝑣𝑖𝑐𝑡𝑁𝑜𝑑𝑒 from 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠

10: 𝑁𝐺𝑃𝑈 -= 𝐸𝑣𝑖𝑐𝑡𝑁𝑜𝑑𝑒 .length
11: end while
12: end while
13: Add node𝑚 to GPU

3.3.2 Selective Admission Policy.
After evicting nodes from GPU HBM, we selectively transfer some of their KV caches from

GPU HBM to host memory, which incurs significant latency. If all evicted KV caches were directly
offloaded to hostmemorywithout selection, the time cost would be prohibitive, leading to substantial
degradation in inference latency and throughput. Such indiscriminate offloading would also result
in host memory being flooded with low-value KV caches, further increasing the burden of managing
these caches.

Observation: Our key observation is that while certain shared prefix KV caches are frequently
reused across different queries, many other KV caches, especially those from user-specific queries
or LLM outputs, are rarely reused. Retaining such low-hotness KV caches in host memory offers
little to no benefit and can unnecessarily increase offloading overhead.
This insight forms the foundation for designing a selective admission mechanism to ensure

that only valuable KV caches are retained. To address the high transfer overhead of offloading KV
caches from HBM to host memory, HotPrefix implements a selective KV cache admission strategy,
as shown in Figure 5. This strategy regulates both the quality and quantity of KV caches, focusing
on preserving high-hotness caches while discarding low-value ones. The detailed process operates
as follows:

Collect Evicted KV Caches From GPU: The blue circles on the left of Figure 5 represent KV
cache nodes evicted from GPU memory, determined by the hotness-aware eviction policy described
in Section 3.3.1. These evicted KV caches are potential candidates for offloading to host memory.

Frequency Threshold Filtering: Each evicted KV cache node undergoes a frequency threshold
check. If the node’s access frequency is below a predefined threshold, it is considered to have
insufficient reuse potential and is immediately discarded. This step filters out KV caches with
minimal future utility, ensuring that host memory is not burdened with low-frequency data.

Hotness Comparison: For KV cache nodes that pass the frequency threshold check, a further
comparison is performed against the hotness of the least critical nodes currently stored in host
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memory, represented by the orange rectangles in Figure 5. The hotness of a node is evaluated based
on its access frequency and recency, which is defined as:

ℎ𝑜𝑡𝑛𝑒𝑠𝑠 = 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑐𝑙𝑜𝑐𝑘. (6)
If the hotness of the current evicted node is lower than that of the least critical nodes in host

memory, it is discarded. By ensuring that only KV caches with meaningful reuse potential are
offloaded to host memory, this comparison step optimizes memory utilization and minimizes
unnecessary transfer overhead, preserving host memory for high-hotness cache entries.
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Fig. 5. The host memory admission process of HotPrefix.

Offloading to Host Memory: Only KV cache nodes that pass both the frequency threshold
and hotness comparison are finally offloaded to host memory.

By carefully controlling the admission process, HotPrefix achieves two key objectives:
• (1) Reducing transfer overhead: The two-stage filtering process minimizes the amount of
data transferred between GPU and host memory, significantly reducing offload latency.
• (2) Improving memory utilization: By discarding low-hotness KV caches, host memory is
reserved for high-hotness data, improving the overall efficiency of memory usage.

It is important to note that while the selective admission policy reduces offloading overhead and
memory congestion, it inherently introduces a trade-off. Some nodes with marginal reuse potential
may be discarded prematurely, which could lead to occasional cache misses and slightly higher
inference latency for specific queries. However, the benefit of preserving only high-value KV caches
far outweighs this drawback, particularly in large-scale inference scenarios where memory and
latency constraints are critical.
Additionally, HotPrefix utilizes host memory with a capacity equal to the space allocated for

KV caches in GPU memory. This relatively small host memory footprint is sufficient because the
hotness admission strategy ensures that only high-hotness KV caches are admitted to host memory.
By filtering out low-hotness prefixes during the eviction process, HotPrefix minimizes the memory
requirements for storing offloaded KV caches, while maintaining their utility for future reuse.

3.4 Hotness Promotion
In our design, a large number of prefix KV caches are stored in host memory. Loading reusable KV
caches from host memory to GPU HBM only after a user request arrives incurs significant data
transfer overhead, which can often exceed the cost of recomputing the KV caches. Therefore, this
paper proposes an efficient prefetch strategy that proactively loads potentially reusable KV caches
from host memory to GPU HBM.
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Since user requests are unpredictable, accurately determining which KV caches should be loaded
in advance is challenging. To maximize the likelihood of reuse, after the current batch prefill stage
completes, HotPrefix simultaneously selects the hottest nodes from host memory and the least hot
nodes from GPU memory (§ 3.4.1). HotPrefix then formulates a node promotion strategy (§ 3.4.2) to
replace low-hotness nodes in GPU memory with high-hotness and shallow-depth nodes from host
memory (§ 3.4.3). This approach ensures that GPU memory retains the most valuable KV caches,
optimizing memory usage and reducing inference latency.

3.4.1 Nodes Promotion Strategy.
For nodes promotion, there are three design principles. First, multi-factor weighting scheme,

in which node depth, KV cache size and node hotness are all considered to make the promotion
decision. If the GPU tree node is far from root node, with large KV cache size and low hotness,
it should be prioritized for offloading to CPU memory. Second, criteria for valid node selection.
HotPrefix prioritizes exchange of coldest GPU leaf nodes with hottest CPU root nodes to ensure
the KV caches in the GPU memory are of high hotness and improve its cache hit ratio. Thirdly, the
timing strategy for promotion. By initiating promotion after the prefill phase where prefixes exhibit
higher reuse potential than in the decode phase, HotPrefix maximizes overlap with decoding.
Figure 6 provides an example illustrating the complete process of hotness promotion. This

promotion process is initiated only after the prefill phase for the current batch is completed. The
primary rationale behind this design is that prefix sharing primarily benefits the prefixes generated
during the prefill stage, whereas the content generated during the decode phase has a significantly
lower likelihood of being shared. By deferring the promotion until the prefill phase is complete,
HotPrefix enables the promotion process to overlap with batch decoding, ensuring that the two
operations do not interfere with each other.

During hotness promotion, HotPrefix selects the coldest nodes in GPU memory and the hottest
nodes in host memory from the prefix tree. For instance, as shown in Figure 6, nodes 𝑃1.2, 𝑃2.1,
and 𝑃2.2 are identified as the coldest nodes in GPU memory, while nodes 𝑃3 and 𝑃4 are the hottest
nodes in host memory. The selected nodes are then compared, and a promotion plan is created to
determine which nodes in host memory should replace their counterparts in GPU memory.

The promotion plan considers multiple factors, including node hotness, depth, and KV cache size.
Specifically, in the promotion plan illustrated in the figure, nodes 𝑃1.2 and 𝑃2.1 in GPU memory are
replaced with the KV cache of node 𝑃3 from host memory, while node 𝑃2.2 is replaced with node
𝑃4. Finally, the Promote module executes the plan, promoting the hot nodes from host memory
into GPU memory.
Regardless of whether the nodes are in GPU memory or host memory, the hotness of ancestor

nodes is always higher than that of their descendants. Therefore, by collecting all leaf nodes in
GPU memory, we can identify the coldest nodes in the GPU. In this context, leaf nodes in GPU
memory refer to nodes that either have no descendants or have all their descendants stored in host
memory. Similarly, by collecting all root nodes in host memory, we can identify the hottest nodes
stored there. Here, root nodes in host memory are defined as nodes whose parent resides in GPU
memory, while they themselves are located in host memory.
Next, we will introduce the process of promoting these high-hotness nodes from host memory

to GPU memory.

3.4.2 Generate Promotion Plan.
When generating the promotion plan, nodes in host memory are first arranged in descending

order of hotness, while nodes in GPU memory are sorted in ascending order of hotness. The hotness
values used in this process are derived from the hotness record structure described in Section 3.2.1.
For instance, as shown in Figure 6, the hotness of node 𝑃3 is higher than that of 𝑃4, while 𝑃1.2 is
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less hot than 𝑃2.1, and 𝑃2.1 is less hot than 𝑃2.2. The promotion process evaluates the nodes in
host memory sequentially. Starting with node 𝑃3, its hotness is compared to that of 𝑃1.2, the least
hot node in GPU memory. Although 𝑃3 is hotter than 𝑃1.2, the number of tokens associated with
𝑃3 exceeds those of 𝑃1.2. Therefore, the next comparison is made between 𝑃3 and 𝑃2.1. In this case,
𝑃3 is hotter, and the combined number of tokens of 𝑃1.2 and 𝑃2.1 is sufficient to accommodate the
tokens of 𝑃3. Consequently, 𝑃3 is selected for promotion, replacing the KV cache space occupied by
𝑃1.2 and 𝑃2.1. Similarly, node 𝑃4, being hotter than 𝑃2.2 and having a smaller token count, forms
another executable promotion plan to replace 𝑃2.2.
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P2.1 P2.2P1.2

P4
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Fig. 6. The promotion process of HotPrefix.

It is important to note that when generating the promotion plan, if a node 𝑥 in host memory
has its parent node 𝑦 in GPU memory and 𝑦 is already marked as a candidate for eviction in the
promotion plan, node 𝑥 will be skipped. This is because promoting a child node 𝑥 to GPU memory
under the condition that its parent node 𝑦 is being evicted is ineffective, as the hotness of a child
node is always lower than that of its parent. Additionally, GPU nodes are processed in ascending
order of hotness, while host memory nodes are processed in descending order. These sorting rules
ensure that, during the creation of the promotion plan, node 𝑥 will not be selected only to later
find that its parent node 𝑦 is being evicted. Consequently, this special case does not disrupt the
formation of the promotion plan. In such scenarios, node 𝑥 can be safely skipped without requiring
any additional processing.
Algorithm 2 outlines the process for constructing a promotion plan to transfer high-hotness

nodes from host memory to GPU memory. Nodes in host memory are first sorted in descending
order of hotness, while GPU nodes are sorted in ascending order of hotness. The hotness values
used for sorting are obtained from the hotness record structure (§ 3.2.1). For each node in host
memory, the algorithm evaluates whether it can replace one or more GPU nodes while satisfying
token space constraints (lines 6–15). If a node in host memory has a parent node in GPU memory
that is already marked for eviction, it is skipped to maintain logical consistency (lines 7–9). The
final promotion plan is then returned, ensuring that GPU memory retains nodes with the highest
reuse potential.

3.4.3 Pipeline Promotion and Decoding.
Promote Nodes to GPU: Once the promotion plan is finalized, the Promote module executes

the replacements by removing the selected low-hotness nodes from GPU memory and loading the
corresponding high-hotness nodes from host memory into GPU memory. The evicted GPU nodes
are directly discarded, as their low hotness indicates a very low probability of reuse. By discarding
these nodes, the Promote module eliminates unnecessary data management overhead as well as
ensuring that GPU memory is refreshed with high-hotness KV caches.
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Algorithm 2 Promotion Plan Generation Workflow
Require: GPU nodes 𝑁𝐺𝑃𝑈 and host memory nodes 𝑁𝐻𝑂𝑆𝑇
Ensure: Executable promotion plan
1: Input: GPU leaves 𝑁𝐺𝑃𝑈 and host memory leaves 𝑁𝐻𝑂𝑆𝑇
2: Sort 𝑁𝐺𝑃𝑈 in ascending order of hotness
3: Sort 𝑁𝐻𝑂𝑆𝑇 in descending order of hotness
4: 𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛 ← ∅ ⊲ Initialize promotion plan
5: for each node 𝑥 ∈ 𝑁𝐻𝑂𝑆𝑇 do
6: if 𝑥 has a parent node 𝑦 ∈ 𝑁𝐺𝑃𝑈 then
7: if 𝑦 ∈ 𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛 then
8: continue ⊲ Skip node 𝑥 if its parent is evicted
9: end if
10: end if
11: for each node 𝑧 ∈ 𝑁𝐺𝑃𝑈 do
12: if hotness(𝑥) > hotness(𝑧) then
13: if 𝑥 .tokens ≤ 𝑧.tokens then
14: Add {𝑥 : 𝑧} to 𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛
15: break ⊲ Move to the next host memory node
16: else if 𝑥 .tokens > 𝑧.tokens then
17: Select more GPU nodes
18: Add {𝑥 : GPU nodes} to 𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛
19: break
20: end if
21: end if
22: end for
23: end for
24: return 𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛

The hotness promotion process does not increase GPU memory usage, as the promotion plan
guarantees that the total memory footprint remains constant. However, if the total GPU memory
required for the subsequent batch decoding stage, combined with previously stored KV caches,
exceeds the available GPU memory capacity, HotPrefix applies the eviction strategy described in
Section 3.3.1 to free up space for the decode stage.
To further optimize performance, the Promote module prioritizes batch transfers of KV caches

from host memory to GPU memory. By grouping multiple transfers into a single operation, it
significantly reduces the total number of memory copy calls and the resulting data transfer-
associated latency.

Pipeline Promotion and Decoding: Additionally, HotPrefix pipelines data transfer operations
over the PCIe bus between the GPU and CPU with ongoing GPU computations during the decode
stage, as illustrated in Figure 7. By scheduling data transfers immediately after the prefill phase and
aligning themwith the decode phase, HotPrefix ensures that data movement occurs asynchronously,
thereby minimizing disruptions to inference performance. This design leverages the key observation
that the decoding process typically generates unique content, which is unlikely to reuse prefix
KV caches. Consequently, overlapping promotion with decoding effectively hides the latency of
transferring KV caches behind GPU computations, as decoding does not depend on the KV caches
being transferred.
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Prefill: Frequent prefix KV cache reuse Decode: Rare prefix KV cache reuse 

Hotness Promotion

Fig. 7. Pipeline hotness promotion with decode stage.

However, a trade-off exists in the promotion: GPU nodes included in the promotion plan are
marked as unavailable during the execution of the plan and will ultimately be discarded. This
may result in minor performance degradation, as these nodes cannot be accessed during this
period. Nonetheless, it is important to emphasize that the nodes selected for the promotion plan
are inherently low-hotness nodes with a very low likelihood of reuse. Therefore, the impact of
marking these nodes as unavailable is negligible. In contrast, the benefit of promoting high-hotness
nodes from host memory to GPU memory is significant, as it greatly enhances cache hit rates and
reduces future inference latency.

In summary, the proposed Promote Module efficiently refreshes GPU memory by replacing low-
hotness KV caches with high-hotness KV caches from host memory, while avoiding unnecessary
data transfers. This process ensures that GPU memory consistently retains the most valuable KV
caches, thereby reducing inference latency and maximizing throughput.

4 Implementation
We implement HotPrefix based on SGLang, version 0.4.1.post1, a widely used LLM inference system.
Firstly, following SGLang’s design, we manage KV caches at per-token granularity across both
CPU memory and GPU device memory. HotPrefix dynamically allocates and releases KV cache
space for each user request on demand. Secondly, we employ a prefix tree to uniformly manage
KV caches residing in both CPU and GPU memory, enabling efficient prefix sharing. Thirdly, for
Dynamic Hotness Tracking, when a node is reused, its access frequency is incremented by 1
and its clock value is reset to pre-defined𝑚𝑎𝑥_𝑎𝑔𝑒 . Additionally, a dedicated CPU-managed thread
periodically decays node clock values to maintain temporal locality, ensuring zero overhead on
GPU computation resources.
For equation 5 and 6, our implementation provides users with a convenient customization

interface. Taking equation 5 as an example, the API is abstracted as "x op1 y op2 z", where x, y, z
can be clock, frequency and length, and op1, op2 can be add(+), multiplication(*) and division(/). For
example, if the data access exhibits obvious temporal variability, we can use clock + freq / length
to capture the dynamic recency pattern. Forthly, for GPU KV cache eviction, if rejected by the
Selective Admission Policy, the tree node metadata is immediately deleted and its corresponding
GPU memory is released. Otherwise, if admitted to the CPU memory, the corresponding KV cache
of the tree node will be transferred to CPU memory and the node metadata will be updated. Lastly,
for Hotness Promotion, a dedicated CUDA stream handles asynchronous memory transferring
and it executes concurrently with the decoding compute stream. This design achieves overlap
between GPU computation and memory transfers due to the absence of prefix sharing during
decoding phase.

5 Performance Evaluation
In this section, we first introduce the experimental setup (§ 5.1). Then we evalute HotPrefix with
vLLM and SGLang on cache hit ratio, inference latency and throughput (§ 5.2). Finally, we do
ablation studies on the techniques used in HotPrefix (§ 5.3).
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5.1 Experimental Setup
Models:We evaluate HotPrefix using the LLaMA-2 13Bmodel [53], Gemma 9Bmodel [52], LLaMA-3
8Bmodel [12] andQwen-2 72Bmodel [60]. Thesemodels represent different sizes and configurations,
enabling us to assess the effectiveness of HotPrefix across a range of inference scenarios.

Testbed: The server for the experiments is configured with 256 GB of DRAM and a 3.84 TB NVMe
SSD. The GPUs are connected to the host via PCIe Gen 3. HotPrefix is evaluated using both 13B, 8B
and 72B models. For the 13B and 9B models, inference tasks are executed on a single NVIDIA A6000
GPU and we also run data parallel experiments on 4 A6000 GPUs using 13B model.To evaluate
HotPrefix’s robustness across different hardwares, we run 8B model on a single RTX 3090, A30,
A6000 and A100 respectively with the same HBMmemory configuration. To evaluate the scalability
of HotPrefix, we run 72B model for tensor parallel experiments on 4 A6000 GPUs.
Workloads: We evaluate HotPrefix using four representative benchmarks: 5-shot MMLU [21],

10-shot Hellaswag [68], BBH [51] and CEVAL [23], with the latter two enhanced through Chain-of-
Thought (CoT) prompting [56]. 5-shot MMLU is a multiple-choice knowledge benchmark where
the model predicts a single token (A/B/C/D) as the answer after being primed with five in-context
examples. Hellaswag is a commonsense dataset containing multiple-choice questions designed to
evaluate model’s understanding of everyday situations. The Big-Bench Hard (BBH) suite is designed
to assess the model’s ability to handle complex tasks. CEVAL is a Chinese-language evaluation
dataset covering multiple domains. Applied with few-shot or chain-of-thought, the average number
of input token of MMLU, Hellaswag, BBH, CEVAL are 567, 753, 723 and 1673. To simulate the
randomness of user input arrival, queries for each dataset are shuffled. This setup ensures that
workloads reflect realistic, dynamic query patterns, providing a robust evaluation of HotPrefix’s
adaptability and performance.

Metrics:We evaluate system performance using the following four key metrics, measured during
batch execution:
• Throughput: Defined as the number of tokens processed by the LLM per second (thousand
tokens per second, kt/s), including both prefill tokens and decode tokens.
• Latency:Measured as the total time required to process an entire dataset, recorded as the
overall execution time for the workload. Lower latency indicates faster task completion.
• Offload Time: Defined as the KV cache transfer time between GPU memory and CPU
memory. As part of inference latency, offload time only exists in HotPrefix, because other
methods only store KV caches in GPU memory. It reflects the additional overhead introduced
by HotPrefix.
• Cache Hit Ratio: Defined as the percentage of KV cache accesses served directly from GPU
memory. A higher cache hit ratio indicates more efficient GPU memory utilization, thereby
reducing inference latency.

Baselines:We compare HotPrefix with state-of-the-art LLM serving systems, which support
prefix sharing:
• vLLM [30]: A state-of-the-art serving system for large language models, designed to reduce
memory fragmentation through the PagedAttention mechanism. In addition, vLLM supports
prefix sharing by caching the KV values of commonly used shared prefixes. We use vLLM
version 0.6.4.post1.
• SGLang-LRU [72]: A high-performance LLM serving system that enables efficient KV
cache reuse across requests in GPU memory. It introduces the RadixAttention mechanism
to optimize memory usage and facilitate flexible prefix sharing. Memory management is
handled using an LRU-based eviction policy. We use SGLang version 0.4.1.post1.
• SGLang-LFU: SGLang with Frequently Used(LFU) eviction policy.
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• SGLang-FIFO: SGLang with First Come First Serve(FIFO) eviction policy.
• SGLang-2Q: SGLang with Two Queue(2Q) [27] eviction policy.

SGLang, its variants and vLLM only use GPU memory for KV cache storage and do not perform
any offloading. For a fair comparison, all baselines are configured with the same maximum batch
size and GPU memory settings as HotPrefix.

5.2 End-to-end Performance Comparison
In this section, we evaluate the end-to-end performance of HotPrefix by comparing it against
SGLang and vLLM. The evaluation is conducted using the LLaMA-2 13B model, Gemma 9B model,
LLaMA-3 8Bmodel and Qwen-2 72Bmodel on four representative workloads: 5-shot MMLU, 10-shot
Hellaswag, BBH, and CEVAL. The comparison focuses on three key metrics: GPU cache hit ratio,
latency, and throughput, all measured under batch execution.
In the experiments, the batch size is set to 64 for all MMLU and BBH tasks, and 32 for CEVAL

and Hellaswag. Both vLLM and SGLang are tested with prefix-sharing optimizations enabled. For
HotPrefix, the cuckoo filter is configured with an 8-bit length for the fingerprint, clock, frequency,
and depth fields, and the𝑚𝑎𝑥_𝑎𝑔𝑒 value is set to 255. The frequency threshold for the selective
KV cache admission module is set to 10. The KV cache dtype we use is bfloat16 and the decoding
strategy is top-p sampling at 0.95. For other decoding strategies compatibility, like parallel sampling,
each sequence can locally applies top-p. For beam search, we can filter candidates with top-p.

5.2.1 Cache Hit Ratio.
Figure 8 illustrates the GPU cache hit ratio of SGLang, its variants, vLLM and HotPrefix across the

MMLU, Hellaswag, BBH, and CEVALworkloads. HotPrefix achieves highest hit ratio across different
tasks, with a 1.17-2.38× improvement over SGLang-LRU, 1.16-2.28× improvement over SGLang-LFU,
1.19-2.56× improvement over SGLang-FIFO, 1.17-2.51× improvement over SGLang-2Q and 1.11-
3.27× improvement over vLLM. The highest improvement is observed on the CEVAL dataset due
to its diverse and complex access patterns, which vLLM and SGLang’s simple cache management
strategies struggle to handle effectively. In contrast, HotPrefix adapts to these characteristics by
dynamically tracking the hotness of KV cache entries and selectively retaining or offloading them
based on their reuse potential.
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Fig. 8. The cache hit ratio of different workloads under Llama-2 13B inference model. Higher is better.

Specifically, the discrepancy arises from the limitations in the cache management strategies of
SGLang and vLLM, which are unable to retain high-hotness KV caches in GPU memory effectively.
SGLang employs a simple LRU eviction strategy, which often results in the premature eviction
of high-hotness KV cache nodes when workloads are shuffled. And vLLM uses a coarse-grained
prefix-sharing approach, where prefixes that do not align with predefined block sizes cannot be
fully utilized. HotPrefix addresses these issues by employing a hotness-aware eviction strategy
that prioritizes the removal of low-hotness KV caches. Furthermore, when GPU memory becomes
insufficient, HotPrefix offloads evicted high-hotness KV caches to host memory and asynchronously
reloads them into GPU memory when required, ensuring minimal performance degradation even
under constrained memory conditions.
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5.2.2 Inference Latency and Throughput.
Figure 9 shows the inference latency of SGLang, its variants, vLLM and HotPrefix across the

MMLU, Hellaswag, BBH, and CEVAL workloads. HotPrefix improves end-to-end inference latency
and throughput that is 1.55-2.00× over SGLang-LRU, 1.45-1.89× over SGLang-LFU, 1.55-1.92× over
SGLang-FIFO, 1.41-1.90× over SGLang-2Q and 1.54-2.25× over vLLM. We also run the evaluation on
Gemma 9B model, achieving similar inference latency performance and throughput improvement,
with 1.45-1.64× over SGLang-LRU and 1.58-1.91× than vLLM. Table 1 shows that the HotPrefix
method introduces offload time overheads of 25.66s, 24.8s, 68.28s, and 27.03s on the MMLU, BBH,
CEVA, and Hellaswag datasets respectively. These overheads account for only 2.6%, 5.9%, 1.1%, and
2.2% of the average inference latency of other methods, yet deliver average improvements of 1.28×,
1.16×, 2.6×, and 1.27× in overall inference latency compared to other approaches.

The highest improvement is observed on the CEVAL dataset, as it features more diverse workloads
and longer request lengths. HotPrefix, with its superior ability to adapt to the dynamic nature of
user requests, achieves a significantly higher prefix KV cache hit ratio on this dataset. This reduces
the need for KV cache recomputation, leading to the greatest improvement in latency performance
and throughput compared to the other methods.
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Fig. 9. The inference latency and throughput of different workloads under Llama-2 13B inference model.

Table 1. Offload time of HotPrefix

Datasets MMLU BBH CEVAL Hellaswag
Offload time (s) 25.66 24.8 68.28 27.03

Specifically, the reduction in inference latency and throughput achieved by HotPrefix primarily
results from its ability to significantly increase the cache hit ratio for prefix KV caches. By selec-
tively offloading only high-hotness KV caches to host memory, HotPrefix minimizes the adverse
impact of offloading time on inference latency. Additionally, during the decode phase, HotPrefix
asynchronously reloads high-hotness KV caches from host memory into GPU memory, thereby
enhancing prefix cache reuse.

5.2.3 Scalability.
This section evaluates the scalability of HotPrefix on multi-GPUs and different kinds of GPUs.

For multi-GPUs evaluation, we run tensor parallelism across 4 A6000 GPUs with Qwen-2 72B
model to fully ultizing GPU resources and LLaMA-2 13B for data parallelism. For different kinds of
GPUs evaluation, we use small model LLaMA-3 8B because original model LLaMA-2 13B exceed
device memory of some GPUs, like A30 and RTX 3090. Figure 10 presents the cache hit ratio and
inference latency of HotPrefix, SGLang and vLLM, all using tensor parallelism across 4 A6000 GPUs
under Qwen-2 72B model. Under this configuration, HotPrefix also achieves the highest cache hit
ratio and improves end-to-end latency that is 1.57-2.42× over SGLang and 1.60-2.61× over vLLM.
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Fig. 10. The cache hit ratio and inference latency of tensor parallelism across 4 GPUs under Qwen-2 72B.

Figure 11 shows the inference latency of HotPrefix of data parallelism 1, 2, 4 under LLaMA-2 13B
model on A6000s. As the number of GPUs used for data parallelism increases, the overall inference
latency of HotPrefix decreases linearly, demonstrating its scalability in multi-GPU data parallel.
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Fig. 11. The inference latency of different data parallelism configurations under LLaMA-2 13B model.
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Fig. 12. The inference latency and throughput of MMLU task across different GPUs under LLaMA-3 8B model
(not original LLaMA 13B because 13B model exceeds device memory of A30 and RTX 3090).

Figure 12 shows the inference latency and throughput of HotPrefix, vLLM, SGLang and its variants
of different types of GPUs under MMLU dataset and LLaMA-8B model. To ensure fairness, all
experiments are run on the same KV cache memory size. Different GPUs have different computing
ability, but HotPrefix outperforms other methods across various GPUs, showing its robustness.
Compared with other methods, Hotprefix achieves 1.06-1.53×, 1.08-1.24×, 1.10-1.28× and 1.18-1.40×
cache hit ratio improvement and 1.17-1.60×, 1.16-2.25×, 1.30-1.68× and 1.58-2.27× inference latency
performance improvement on RTX 3090, A30, A6000 and A100 respectively.

5.3 Ablation Studies
In this section, we present ablation studies to evaluate the individual optimization components
of HotPrefix. The experiments are performed on the LLaMA-2 13B model, with the Cuckoo Filter
configured to use an 8-bit length for the fingerprint, clock, frequency, and depth fields, and a
𝑚𝑎𝑥_𝑎𝑔𝑒 value set to 255. The batch size for MMLU, Hellaswag and CEVAL is 32, 32, 4.
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5.3.1 Selective Admission Policy.
Figure 13 illustrates the impact of adopting the selective admission policy in HotPrefix on cache

hit ratio and end-to-end latency. When the admission policy is disabled, all KV caches evicted from
GPU memory are offloaded to host memory.
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Fig. 13. The ablation study on selective admission. Yellow portion is offload time between GPU and CPU.

As shown in Figure 13(a), compared to disabling the admission policy, HotPrefix with the
admission policy reduces the cache hit ratio by only 0.2% on MMLU and 10% on CEVAL and
5% on Hellaswag, but reduces 10-65× offload time. Finally, HotPrefix achieves lower inference
latency than without selective admission, with a 1.28-3.54× improvement. This improvement stems
from its ability to prevent the offloading of KV caches that are unlikely to be reused into host
memory, greatly reducing the offload time between CPU and GPU memory. Although HotPrefix
may occasionally reject certain KV caches that could be reused in the future, causing a little lower
cache hit ratio, the overall advantages of Selective Admission Policy outweigh the disadvantages.

5.3.2 Comparison of Optimization Components.
In Figure 14, we make the comparison of all optimization components.
We combine "A" and "P" together because offloading with admission is for KV cache promotion

and we have analyzed the individual impact of the Selective Admission Policy in Section 5.3.1.
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Fig. 14. The ablation study on all optimization components. The yellow portion is the offload time between
GPU and CPU. The "Baseline" means SGLang without any optimization, "E" means Hotness-aware Eviction
Policy, "A" means Selective Admission Policy and "P" means Hotness Promotion.

Compared with "Baseline", "Baseline+E" achieves 1.02-1.11× cache hit ratio increase and 1.02-
1.44× latency performance improvement, "Baseline +A+P" achieves 1.30-1.56× cache hit ratio
increase and 1.19-1.47× latency performance improvement, and "Baseline+E+A+P" achieves 1.32-
1.92× cache hit ratio increase and 1.65-1.77× latency performance improvement.

Although "Baseline+E" onlymarginally improves upon "Baseline", "Baseline+E+A+P" outperforms
"Baseline+A+P" 1.07× on cache hit ratio, 7.77× on offload time and 1.38× on inference latency.
The interesting result shows that "E" alone yields modest performance gains, while the combined
application of "E" and "A+P" leads to significant performance improvements. The benefits of
combination of "E+A+P" lies in two aspects. First, the combined "E+A+P" together improves 1.08×
cache hit ratio than "A+P". Second, with "E", HotPrefix evicts lowest hotness KV caches to CPU
memory, avoiding frequent KV cache transfer between GPU and CPU and leading to 7.77× offload
time improvement compared with "A+P".
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5.3.3 Hotness-aware Eviction Policy.
We compare HotPrefix with versions of HotPrefix that use simple LRU, LFU, FIFO and 2Q as

the eviction policy to evaluate the effectiveness of Hotness-aware Eviction. Figure 15 shows the
cache hit ratio and inference latency for MMLU, CEVAL and Hellaswag. HotPrefix achieves the
lowest inference latency, with a 1.11-1.37×, 1.07-1.89×, 1.13-1.63×, and 1.02-1.34× improvement
over LRU, LFU, FIFO, and 2Q respectively. The improvement of inference latency comes from
two aspects. First, HotPrefix needs least offload time between CPU and GPU KV cache transfer,
because Hotness-aware Eviction evicts the lowest hotness KV caches, avoiding frequent KV cache
transferring. Second, HotPrefix achieves the highest cache hit ratio with the help of Hotness-aware
Eviction Policy.
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Fig. 15. The ablation study on cache eviction policy. Yellow portion is offload time between GPU and CPU.

5.3.4 Hotness Promotion.
In HotPrefix, during the decode phase, KV caches are asynchronously loaded from host memory

to GPU memory based on their hotness.We compare HotPrefix with versions of HotPrefix that
use simple recency, frequency and depth as the criterion of selecting KV caches to load from CPU
memory to GPU memory to evaluate the effectiveness of Hotness Promotion criterion. The recency
and frequency metrics are the clock value and frequency value in the hotness record structure
described in Section 3.2.1. The depth metric is the KV cache nodes depth in the prefix tree.
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Fig. 16. The ablation study on hotness promotion. Yellow portion is offload time between GPU and CPU.

Figure 16 shows the cache hit ratio and inference latency for MMLU, CEVAL and Hellaswag. As
shown in Figure 16(a), Hotness Promotion achieves the highest cache hit ratio, with a 1.13-2.57×,
1.01-1.14×, and 1.05-2.09× improvement over recency, frequency, and depth promotion respectively.
Figure 16(b) demonstrates that Hotness Promotion achieves lowest inference latency, with a 1.17-
2.22×, 1.04-1.30×, and 1.09-1.88× improvement over recency, frequency, and depth promotion
respectively. And the offload time between GPU and CPU of Hotness Promotion is also the lowest.
6 Related Work
Caching Systems: Traditional Caching systems [8, 16, 38, 40, 45, 46] are widely used in various
applications, like operation system caching, web caching and CDN caching. Operating system
caching systems, like Linux page cache [38] and ZFS ARC [40], are optimized for uniform cache-line
sizes, failing to address the variable computational costs of different-length KV cache misses in
LLMs. Web caching systems, like Redis [8] and Memcached [16], are designed for independent
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request handling with simple eviction costs, incapable of modeling prefix-tree dependencies or
asymmetric CPU-GPU transfer overheads in LLM inference. CDN caching systems, like Akamai [46]
and Cloudflare [45], focuse on network level efficiency, rather than computational cost, making
them inherently unsuitable for managing the latency sensitive, variable computational cost KV
cache management in LLM inference.
Unlike these generic solutions, HotPrefix primarily focuses on managing prefix sharing LLM

inference KV cache. In the prefix tree, different KV cache nodes vary significantly in length, and
the computational cost of a KV cache node miss is substantial. These factors collectively result in a
wide disparity in the cost of cache misses across different KV cache nodes. Thus, a more dynamic,
precise, and low-overhead cache management solution is needed to handle the KV cache in prefix
sharing LLM inference.

KV Cache Management: KV caches are extensively employed to accelerate inference in large
language models (LLMs). Recent advancements in this area have focused on reducing the memory
footprint of KV caches through various techniques, including quantization, compression, and layer
sharing. Quantization methods [11, 22, 29, 37, 44, 48, 62, 69], aim to compress KV caches by reducing
their bit precision, from 16-bit to as low as 4-bit or even lower. For example, CacheGen [13] combines
KV offloading with quantization-based compression to reduce the overhead of transferring KV
caches between GPU and host memory.

Compression techniques [3, 18, 34, 36, 59, 61, 70] exploit the sparsity in attention layers, retaining
only the most important KV cache entries in GPU memory while discarding less significant
ones. Representative works include [1, 5, 13, 26], which aim to optimize memory usage without
significantly impacting model performance.

Unlike these methods, which may compromise the model’s prediction accuracy, HotPrefix adopts
a different approach by utilizing both GPU memory and host memory to retain high-hotness prefix
KV caches. This strategy maximizes KV cache reuse without sacrificing inference accuracy.
KV Cache Reuse: KV cache reuse [1, 13, 15, 17, 19, 25, 30, 35, 66, 67, 72] has been exten-

sively studied to enhance inference efficiency by reducing redundant computations. Among these,
vLLM [30] reuses KV caches by reserving fixed physical memory blocks for shared prefixes. While
this mechanism simplifies memory allocation, it suffers from coarse granularity. If the prefix length
does not align with block sizes, some parts of the prefix cannot be effectively reused, leading to
inefficiencies. SGLang [72] organizes KV caches into a radix tree using RadixAttention to maximize
reuse. This structure facilitates prefix sharing. However, its reliance solely on GPU memory limits
scalability. Additionally, SGLang employs a simple LRU eviction strategy, which struggles to adapt
to dynamic user requests. Notably, SGLang’s original experiments [72] benefited from unshuffled
datasets, which allowed its radix tree structure to maximize prefix reuse. However, shuffled work-
loads, which better represent real-world user access patterns, expose its limitations in adapting
to dynamic and less predictable prefix reuse scenarios. In these cases, its performance converges
with vLLM. CachedAttention [17] extends KV cache storage across disk, host memory, and GPU
memory, primarily targeting multi-turn conversation scenarios. However, it heavily depends on
job queue information to prefetch KV caches. In dynamic user environments, such as when new
requests arrive after the previous ones are processed, this approach becomes ineffective due to
the lack of proactive adaptation. PromptCache [19] proposes modular reuse beyond prefixes but
sacrifices accuracy, with reported performance drops of up to 43% [72], making it unsuitable for
tasks requiring high precision.

HotPrefix addresses the limitations of these methods by introducing a hotness-aware KV cache
scheduling framework that dynamically evaluates the reuse probabilities of prefix KV caches. Unlike
vLLM’s fixed block allocation or SGLang’s GPU-only strategy, HotPrefix leverages both GPU and
host memory collaboratively. By dynamically tracking prefix hotness, it employs hotness-aware
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eviction and asynchronous promotion mechanisms to adapt to user request patterns. HotPrefix
utilizes fine-grained hotness evaluation and KV cache promotion to achieve higher reuse rates and
improved performance , addressing the inefficiencies inherent in vLLM’s coarse-grained prefix
sharing. Furthermore, compared with SGLang, HotPrefix demonstrates robustness even under
shuffled workloads, which reflect more realistic user access patterns, highlighting the adaptability
of HotPrefix in handling diverse and unpredictable request scenarios.

7 Conclusion and Future Work
This paper presents HotPrefix, a novel hotness-aware KV cache scheduling framework designed
to maximize the reuse of prefix KV caches during LLM inference. HotPrefix reduces end-to-end
inference latency and increases throughput by incorporating optimizations, including hotness
tracking, hotness-aware eviction strategy, selective admission policy, and hotness promotion.
Extensive experimental results demonstrate that HotPrefix significantly enhances LLM inference
efficiency, achieving up to a 2.25× reduction in inference latency and increase in throughput
compared to vLLM with prefix sharing enabled. Similarly, compared to SGLang, HotPrefix delivers
up to a 2× reduction in latency and improvement in throughput.
For future work, we plan to extend HotPrefix to support multi-modal inference. By addressing

the complex KV cache dependencies shared across text, image, and other modalities, this extension
could enable more efficient multi-modal applications.
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