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Abstract—Redundancy elimination (RE) systems allow net-
work users to remove duplicate parts in their messages by
introducing caches at both message senders’ and receivers’ sides.
While RE systems have been successfully deployed for handling
unencrypted traffic, making them work over encrypted links is
still open. A few solutions have been proposed recently, however
they either completely violate end-to-end security or focus on
single-user setting. In this paper, we present a highly secure
RE solution which supports cross-user redundancy eliminations
on encrypted traffics. Our solution not only preserves the end-
to-end security against outside adversaries, but also protects
users’ privacy against semi-honest RE agents. Furthermore, our
solution can defend malicious users’ poisoning attack, which is
crucial for cross-user RE systems but has never been studied
before. In cross-user RE systems, since all users inside a LAN
write into a shared, global cache and use it to recover their
original messages from deduplicated ones, the poisoning attack
is prone to happen, and cause systematic damage to all users even
when only one user is malicious and injects poisoned data into
the cache. We rigorously prove our solution’s security properties,
and demonstrate its promising performance via testing the proof-
of-concept implementation with real-world internet traffic data.

Index Terms—redundancy elimination,
Message-locked encryption, poisoning attack

WAN optimizer,

I. INTRODUCTION

Several studies (e.g. [1]-[4]) have discovered that a large
amount of same or similar contents are transferred repeatedly
across the Internet. To reduce the redundancy in network
traffic, especially in the wide-area network (WAN) traffic, a
number of redundancy elimination (RE) systems or proto-
cols [5]-[7] have been proposed by researchers from both the
industry and the academia in recent years.

A RE system for WAN optimization involves two or more
LANs which are connected with WAN links. On an edge node
of each LAN (usually a gateway router), a module called
deduplication agent is deployed to serve all RE system users
inside the LAN. The agent maintains a cache which stores
inter-LAN messages that are recently sent or received by users
inside the LAN. Before a new message enters the WAN, its
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sender cooperates with the agent to eliminate the redundant
parts.

Specifically, to increase the chance of deduplication, mes-
sages are generally broken into chunks. The cache serves as a
“chunk dictionary”, and stores chunks and their identifiers or
fingerprints. Before a sender sends a message cross the WAN,
it first looks up the message’ chunks in the cache and replaces
matched ones with shorter identifiers or fingerprints which are
generally the chunks’ hash values. Thus the total amount of
data that traverses through the WAN is reduced. Eliminating
redundant or repeating data of WAN traffic can largely increase
the network’s efficiency and reduce the WAN cost, thus RE
systems are of great interest to enterprises (especially big ones
who have branches in different cities or even countries), ISPs,
data centers and networking device vendors.

In this paper, we aim to design secure RE solutions
that support cross-user deduplications on encrypted traffic.
Although RE systems have been successfully deployed to
handle unencrypted traffic, making them work on encrypted
traffic and support cross-user deduplications turns out to be
extremely challenging. Especially existing secure transmission
protocols such as TLS and IPSec adopt so-called “End-to-
end encryptions” which requires that messages are encrypted
by their sender before entering into the network environment,
and gets decrypted only at the receiver side after leaving the
network. Deduplication agents who reside in the middle can
only see garbled meaningless bits in this case, thus cannot find
the matching parts easily as they do for unencrypted traffic.
In addition, compared with single-sender-single-receiver RE
scenarios, multi-sender-multi-receiver or cross-user deduplica-
tions make deduplication agents’ task even more complicated
since deduplications need to be performed over messages that
are encrypted by different users possibly using different keys.

Besides above difficulties, we further consider users may be
malicious and launch the poisoning attack. In a cross-user RE
system, a shared, global cache is used by the agent and users
inside the same LAN to perform deduplications. A malicious
user can launch this lethal attack by injecting poisoned or false
content into the cache and trick other users to receive false
messages when they use the poisoned content in the cache to
recover deduplicated messages. Given that LANs usually have
many users with varied networking security conditions and the
cache is fed by all users, poisoning attack is prone to happen



and can cause system-wide damages to all users inside the
RE system even if one user is compromised or controlled by
malicious attackers.

One may propose to let the sender attach an error detection
code to the message so that the receiver can detect the
poisoned message and demand a re-transmission. However,
this simple fix is not a cure to poisoning attacks. The poisoned
content is still inside the cache and continues to cause damage
(i.e. extra bandwidth cost, delay due to retransmissions) to all
users unless the poisoned content is removed completely.

Moreover, we note that letting the agent remove a poisoned
record from its cache is more tricky than it appears to be.
Firstly, the agent needs to be able to verify the correctness
of users’ reports of poisoned records, otherwise reporting
mechanism could be misused by malicious users. Secondly,
for privacy matters, users need to convince the agent that a
stored ciphertext of a chunk is poisoned without revealing the
chunk to the agent.

We address the above complicated issues, and design a fully
secure cross-user RE protocol called DTEp that preserves end-
to-end security and thwart poisoning attacks in this paper.

To achieve the end-to-end security, DTEp adopts a different
“deduplication-then-encrypt” strategy. Specifically, DTEp lets
users and their agent to jointly maintain a two-level cache
system, and perform Deduplication first (according to the
cache) and Then Encryptions over reduced messages using
TLS or SSL. Instead of storing previously sent message
chunks, the cache owned by the agent stores the ciphertexts
of these chucks for protecting the confidentiality of messages.

To support secure cross-user deduplications and protect the
system against poisoning attacks simultaneously, we propose
a novel Message-Locked Encryption scheme called MLEvd
using prime-order bilinear maps for message encryption, and
adopt a lightweight “key revealing” approach for (indirect)
ciphertext verification instead of using costly zero-knowledge
proofs based solutions. MLEvd allows different users to
generate same keys for same plaintexts so that cross-user
deduplication is possible, and additionally supports key ver-
ification and dynamic keys. Accordingly, users can report
poisoned ciphertexts to the agent and prove they are indeed
poisoned by revealing the encryption key to agent. With the
help of MLEvd’s key verification, the agent can easily verify
the correctness of the key first, and then the ciphertext by
performing the encryption with the correct key on its own.
Since MLEvd supports dynamic keys, users can generate a
new key to encrypt once a key has been revealed.

Our main contributions are summarized as follows.

o We study the cross-user RE system for WAN optimization

over encrypted traffic and propose the first fully secure
RE protocol called DTEp that preserves end-to-end se-
curity and thwarts poisoning attacks. We formally prove
the security of our protocol.

e We propose a novel MLE scheme called MLEvd that
supports dynamic key and key verification. MLEvd is
PRV-CDA secure, i.e. semantically secure under chosen
distribution attacks, which is the best possible type of

privacy for MLE schemes [8]. It guarantees no PPT
adversaries can differentiate the encryptions of two equal-
length messages that are unpredictable or have high min-
entropy.

o We implement a proof-of-concept of our protocol, and
use real-world data set to evaluate the performance of it.

The rest of this paper is organized as follows. In Sec. II
and Sec. III, we introduce the related works and preliminaries
respectively. Then, we explain MLEvd in Sec. V and present
DTEp in Sec. VI. After showcasing DTEp’s performance in
Sec. VII, we conclude our paper in Sec. VIII .

II. RELATED WORK
A. WAN Redundancy elimination

Previous RE systems are usually designed for reducing
unencrypted WAN traffic [7]. Due to the rapid increase of
encrypted traffic of Internet, researchers began to design RE
systems for encrypted traffics.

In [5], Cisco Inc. designs a RE system over SSL encrypted
links in its Wide Area Application Services SSL Application
Optimizer. Cisco’s RE system lets the agent to launch a man-
in-the-middle attack to decrypt the traffic encrypted by the
sender. Since the agent can see the decrypted message, it can
perform deduplications easily based on plaintext. Although the
system protects privacy against outside adversaries, the system
actually breaks the end-to-end privacy between the sender and
the receiver and reveals the message to the agent.

In [6], Fan et. al. propose a novel two-layer encryption
RE scheme called REET for WAN traffic deduplications. To
largely preserve the end-to-end privacy and support the agent-
side deduplication (meaning the agent performs deduplications
over the ciphertexts that are encrypted by users), REET relies
on two layers of encryptions. It first breaks a message into
several segments which consists of one “fingerprint chunk”
and a few “payload chunks”. Then it lets users firstly encrypt
the all chunks using a deterministic symmetric encryption
scheme, and then re-encrypt the first-layer ciphertexts of
payload chunks using a randomized symmetric encryption
scheme with their fingerprint chunk’s hash as the key. Finally,
users need to also run a secret sharing scheme on the key
and attach the random share to the ciphertext. When the agent
sees two ciphertexts with the same fingerprints, the agent also
gets two shares of the second-layer key. By recovering the
key, the agent can remove the second-layer encryption of the
payload chunks and see whether redundancy can be found.
This work improves the security of RE systems since the
agent needs to first see a hint of possible redundancy (i.e. the
same fingerprint) then can be able to check the other chunks.
However, two layers of encryptions bring extra burden to the
users and authors do not consider poisoning attacks.

B. Convergent encryptions and Message-locked encryptions

Nowadays, encryption schemes usually are required to be
semantically secure which basically means no adversary can
extract any information about the plaintexts from their corre-
sponding ciphertexts. This immediately renders deduplications



over the ciphertexts impossible since we need the server to tell
whether two ciphertexts have the same plaintext.

To meet the practical need, a less-secure encryption scheme
called convergent encryption (CE) was first proposed by
Douceur et. al. [9]. For a message m, CE uses the hash
value of m as the encryption key and use a deterministic
symmetric encryption to encrypt the message. It is easy to see
the same messages result in the same ciphertexts, which makes
the agent be able to perform deduplications over ciphertexts.
Despite CE schemes had been widely used to construct secure
deduplication solutions, most work failed to provide rigorous
treating on the security of CE schemes until Xu et. al. [10]
and Bellare et. al. [8] present their excellent jobs. Specifi-
cally, CE was generalized into a type of encryption schemes
called Message-Locked Encryptions, and semantically security
models under “chosen distribution attacks” named PRV-CDA,
PRVS$-CDA and their adaptive versions are defined assuming
the underlying message is unpredictable [8]. In this paper, we
adopt the same theoretical framework and design a novel MLE
scheme that is proved to be PRV-CDA secure.

C. Storage deduplication and Tag consistency

The similar idea of deduplication or redundancy elimination
is also studied for online storage systems such as cloud or IoT,
and related studies (e.g. [8], [10]-[14]) are quite popular in
recent years.

Despite the similarity, deduplication problems in the two
areas have many major differences. Most secure deduplication
works for storage systems work on the file-level, so chunking
is generally not required. In addition, the ownership of the
stored files is a major concern for storage RE systems while
the concept usually does not exist in networking systems.
Finally, it is important for a network RE solution to provide
high throughput. However, this is usually not a concern for
storage RE solutions.

Interestingly, we point out the poisoning attack (or the
equivalent one named “duplicate faking” [8]) has been found
on an existing RE storage solutions [15], and have been
discussed in a few works [8], [10], [16]. Solutions to this
problem in storage systems require the RE systems to have a
security property called “tag consistency”.

Tag consistency can be achieved by requiring the server
to be able to identify a false ciphertext at the moment when
it is uploaded. It is generally implemented in two manners.
Some works make the tag to be directly verified with the
ciphertext. For example, the tag is computed as the hash value
of the ciphertext in CE. Other works achieve tag consistency
by letting the user upload a zero-knowledge proof which can
be used by the server to verify whether the ciphertext and the
tag match. However, the first kind of solutions only works
with deterministic ciphertexts thus have weak security and the
second kind of solutions incurs heavy cost in our problems.

Another way to provide tag consistency is by allowing the
user to perform a tag recompute-and-check operation (called
“guarded decryption” in [8]). However, as we have explained
before, guarded decryption only lets the user observe the

wrong ciphertext, but it still needs to convince the agent about
the attack in our problem.

III. PRELIMINARIES
A. System model

To provide a simple motivating scenario, we consider an
enterprise which has two branches in two different cities as
depicted in Fig. 1. Each branch has its own LAN, and the
two LANs are connected with a public WAN. We assume a
deduplication agent resides at the gateway node in each LAN
and helps the two LANSs’ user nodes to perform deduplications
over their WAN communication traffic. For security considera-
tions, users communicate with each other via TLS connections
which offers the applauding end-to-end security.

-

Fig. 1. System Overview

To perform deduplications over the encrypted connections,
users and agents need to cooperate and run a redundancy
elimination protocol in a secure manner.

B. Adversary models
We consider two kinds of adversaries in our RE system:

1) Semi-honest agents: We assume the deduplication agents
are semi-honest. In essence, this requires agents to
honestly follow the predefined protocol. Nevertheless,
the agent may try to infer private data of other protocol
participants (i.e. the users) based on the data collected
during the protocol execution.

2) Malicious users: Due to accidents such as hacking,
software bugs, etc., users could be malicious and violate
the protocol. Specifically, we focus on the poisoning
attacks, i.e. injecting incorrect ciphertexts into the RE
system from these users.

We note that there might be another kind of adversary called
outside eavesdropper. In our scenario, an eavesdropper is not
a LAN user, but takes the advantage of the open, public WAN
to monitor the data traffic between the two LANs and to break
the communication confidentiality. Since all WAN data traffic
is encrypted via TLS in our design, eavesdropping attacks can
be effectively thwarted. We neglect this adversary in our paper.

C. Content-defined chunking

To increase the chance of finding redundancy, messages or
files to be deduplicated are generally cut into smaller chunks
using content-defined chunking (CDC) schemes. One of the



most fundamental and popular CDC schemes is the Rabin
CDC algorithm which is also adopted in our experiments.

Specifically, given a message, Rabin CDC algorithm would
run a sliding window through the bits of the message, and
compute the Rabin fingerprint [17], [18] of the content inside
the window. Whenever the fingerprint satisfies a preset con-
dition is satisfied (e.g. a multiple of 2%), the message is cut
at the current window’s boundary. The above scanning and
cut process ends until the window reaches the last bit of the
message.

We note that works (e.g. [19], [20]) have been proposed in
recent years to increase the performance of CDC schemes for
deduplication systems.

D. Bilinear maps

A bilinear map e : Gy x Gy — Gg is a function that maps
a pair of elements in two multiplicative groups Gy and Go to
an element in the third group Gs, and satisfies the following
property:
o bilinear: e(u®,v*) =
u € Gy and v € Go.

e(u,v)® holds for all a,b € Z,

Usually we further require e is non-degenerate, i.e. e does not
map every pair to the identity.

Specifically, our protocol uses a non-degenerate bilinear
map e : G x G — G* in which Computational Diffie-Hellman
(CDH) problem is hard on G, and let g and ¢g* be the two
groups’ generators respectively.

In our solution, we further require the order the groups is
a large prime.

IV. DTE-S: A STRAWMAN PROPOSAL

For clarity, we first propose DTE-s, which outlines

the main structure of our DTE-p solution, but
adopts a naive message-lock encryption scheme
MLE := (MLE_KG,MLE_ENC,MLE_DEC) and totally

neglects the poisoning attacks.

A. Protocol details

1) Chunking: For each message M to be sent, Alice runs
a CDC algorithm and decomposes M into an array of small
chunks:

M:{ml,mg,...

sMp} D

2) Key and fingerprint generation: For each chunk m; (¢ €
{1,2,...,n}), Alice computes its key as

K; = MLE_KG(m;) := h(m;), )

and fingerprint as
Fy = h(K;), 3)

where h is a publicly agreed secure hash function.

3) Deduplication: For each chuck, Alice checks whether it
can be deduplicated by looking up its corresponding finger-
print in the fingerprint table 17, stored in her local cache. If
the fingerprint is found, the chunk has been sent and Alice can
send a short key instead of the long chunk. With the key, the
receiver can find the right ciphertext and decrypt the chunk
out.

After deduplication, Alice gets a deduplicated message
M’ = {mfy,m},...,m,} as follows.

, m;
m; =
K;

4) End-to-end secure transmission: Alice establishes a TLS
connection with Bob, and sends M’ to Bob through the
connection. The end-to-end security of TLS ensures only Bob
can see M.

if F; ¢ Tra;
otherwise.

“4)

5) Message recovery: After receiving a TLS encrypted
message, Bob decrypts it and gets M’. Bob recovers M from
M’ with the help of David, the deduplication agent in his
LAN.

Specifically, for each K; in M’ Bob computes its corre-
sponding fingerprint F; following Eq. (3),! and downloads its
corresponding ciphertext ¢; from David by sending F; to him.
After receiving c;, Bob decrypts it to recover

m; = 1\/ILE_I)EC(CZ‘7 Kz) (5)

and replaces K; with m; in M’ to recover M.

6) Synchronizations of Alice: For each F; ¢ Tp,, Alice
encrypts m; with K; as

Alice sends all < Fj, c; > to its deduplication agent Carol.
She downloads all fingerprints in the global fingerprint table
Tge from Carol’s cache and inserts them to 717, in her local
cache.

7) Synchronizations of Carol: After receiving a list of <
F;, c; >, Carol inserts them to T, and sends back the list of
fingerprints in T to Alice.

8) Synchronizations of Bob: For each M; received, Bob
computes K; following Eq.(2) and encrypts m; using it as the
key

¢; = MLE_ENC(m;, K;). 7)

In addition, Bob computes F; following Eq.(3).

Bob uploads all < Fj, ¢; > pairs to David.

9) Synchronizations of David: After receiving a list of <
F;, c¢; > from Bob, David inserts them to his global fingerprint
table Tiz4 and sends back the latest list of fingerprints in Tqy
to Bob.

'Here we assume everyone agrees on a coding scheme that differentiates
message chunks and keys in a deduplicated message.



B. A few notes on DTEs

DTEs adopts a two-level cache system. Each user maintains
a local cache and the agent maintains a global cache. To
increase the efficiency of message transmission, users can
check the redundancies locally. This is important for real-
world networking systems.

In addition, we note the synchronizations between the user
and the agent can take place during their idle time in practice.
There might be temporary inconsistencies between the user’s
local cache and the agent’s global cache. However, the damage
caused by the inconsistency could only be a lower deduplica-
tion efficiency, rather than a transmission failure since one can
introduce an error detection mechanism (e.g the error detection
code) and data re-transmission mechanism in case Bob fails
to decrypt the correct chunk.

Finally, we note that since DTEs only adopts a naive
MLE scheme, it cannot achieve the formal PRV-CDA security
guarantee, and fails to protect the system against poisoning
attacks as we will clarify in the next section.

V. MLEVD: A MLE SCHEME SUPPORTING KEY
VERIFICATIONS AND DYNAMIC KEYS

Before we introduce our DTEp protocol, we propose a novel
MLE scheme which would be used to construct DTEp.

A. The tricky poisoning attack

We note that it is easy for the message receiver Bob to
detect any poisoning attack assuming an error detection code
is attached within the message (which is quite common in
many application-layer protocols) and to locate the poisoned
ciphertexts if they exist. Specifically, if Bob finds the recovered
message and the error detection code do not match, Bob knows
some ciphertexts are poisoned. In addition, Bob can easily
check whether a ciphertext ¢ is poisoned by computing the
key himself with the recovered plaintext m:

m = MLE_DEC(¢, K), (8)
K = MLE_KG(m). )

If K # K, Bob knows ¢ is poisoned. Once Bob knows
which ciphertexts are poisoned, he can send these ciphertexts’
fingerprints back to Alice and require Alice to re-send the
corresponding chunks.?

To completely remove a poisoned ciphertext, Bob still needs
to notify David of this ciphertext and convince him that it is
poisoned since a malicious inside attacker may deliberately
send a fake alarm.

Unfortunately, it is challenging for Bob to convince David
that a fingerprint-ciphertext pair (F;,é) is poisoned, or not
the correct encryption of m;. A naive solution is to reveal m;
to David, and David can verify ¢;’s correctness as Bob does
the verification. However, this completely loses Bob’s message
secrecy, thus is not acceptable. One might propose to use zero-
knowledge proofs (ZKPs) which are used by Cryptographers

2We assume that Alice maintains a buffer which stores recent sent chunks
and their fingerprints.

to prove a statement about a secret without revealing the secret.
However, symmetric encryption schemes (e.g. AES, ChaCha,
etc.) are mostly adopted to achieve high throughput in practical
network traffic transmissions. Therefore, Bob needs to prove a
ciphertext is or is not the correct AES/ChaCha encryption of
a secret input essentially. The encryptions here are not based
on public-key assumptions and do not have simple arithmetic
structure which render the ZKP solutions costly in terms of
computation and communication.

B. Details of MLEvd

To conquer the above challenges, we design MLEvd which
supports key verifications and dynamic keys as follows.

MLEvd adopts a dynamic key K;(t) generated based on the
plaintext chunk m; and a random nonce t. Lete : GXG — G*
be a non-degenerate bilinear map such that the CDH assump-
tion holds on G. Let SDE = (SK,SE,SD) be a symmetric
deterministic encryption scheme where SK, SE and SD are the
key generation, encryption, decryption algorithms respectively.
And denote by K the key space of SDE.

Specifically, MLEvd consists of six PT algorithms:

e PG(1*) — P: on input of the security parameter 1%,
parameter generation algorithm generates pairing group
G = (g) of a prime order p, its corresponding bilinear
map e and the target group G*. Let h : {0,1}* — Zy
and H : {0,1}* — K be two cryptographic hash func-
tions. Then KG returns {e, g,g*,p, h, H} as the public
parameters P.

e FG(P,m) — F: on input m, the fingerprint algorithm
computes its fingerprint as

F = ghm), (10)

o KG(P,m) — (K(t),t): on input input m, the key gen-
eration algorithm samples a random nonce ¢ & Z, \ {0}
and computes

K(t) = g"mt, (11)

and outputs (K (¢),t).
o ENC(P,m) — C: on input m, the encryption algorithm
calls KG to get (K (t),t), computes
¢ = SE(m, H(K(t))),
T=g,

(12)
(13)
and outputs C' = (¢, T') as the ciphertext.

o DEC(C, K(t)) — m/: the decryption algorithm parses ¢

and T from C, and outputs
m’ = SD(c, H(K(t))). (14)

The guarded decryption algorithm GDEC(C, K (t)) —
{m’, L} can be further defined by additionally checking

whether
Th™) = K(t) (15)

holds, and outputting | instead when result is negative.



e KV(C,F,K) — {0,1}: the key verification algorithm
parses ¢ and T from C, checks whether

e(F,T) = e(g, K) (16)

holds. KV outputs 1 if yes, and O otherwise.

We note that guarded decryption algorithm can be used by
users to check if a ciphertext is poisoned. Using the correct
key, the algorithm always outputs the correct plaintext if the
ciphertext is right, and outputs a false symbol L if a poisoned
or incorrect ciphertext is inputted.

In addition, the key verification algorithm can be used by
agents to verify if a key submitted by users (who want to prove
a poisoned attack to agents) is the correct one corresponding
to the ciphertext and fingerprint. If the result is positive, the
algorithm outputs 1; otherwise, it outputs 0.

C. Correctness analysis

We postpone the security analysis till we finish introducing
the entire protocol. Here we briefly analyze the correctness of
MLEvd. Since correctness for regular encryption and decryp-
tion directly follows the correctness of underlying encryption
scheme SDE, we neglect this part and focus on proving the
correctness of guarded decryption and key verification algo-
rithms. Specifically, we have proved the following theorems.

Theorem 1. The guarded decryption of MLEvd is correct
in the sense that with an input of a correctly computed key
K(t) = TM™), GDEC(C, K (t)) outputs m if C correctly
encrypts m, or L otherwise.

Proof. Considering C'is correctly computed from m following
Eq. (12) and Eq. (13), the correctness of underlying SDE
guarantees m’ = m. Then we have

= (g™ (18)
= K(b). (19)

Eq. (15) holds and GDEC outputs m correctly.

Considering C' is poisoned i.e. m’ # m, we claim Eq. (15)
does not hold and GDEC outputs L. If this is not the case,
we have

e — Th(m/)/Th(m)
_ h0m")=h(m)

(20)
(2D
Since t, h(m) € 7y, T = g' is also a generator of G, we know
h(m') —h(m) =0 mod p, (22)

1—p < h(m') —h(m) <p-L (23)

Accordingly we have h(m') = h(m) which contradicts with

the collision-resistance of h. Therefore, GDEC would output
1 in case C is poisoned. O

Theorem 2. The key verification of MLEvd is correct in the
sense that KV outputs 1 if and only if the key input is correctly
computed based on C = (¢,T) and F = g"™), ie. K =
Th(m)'

Proof. We first prove sufficiency. Assuming K is correct, due
to the bilinearity we have

e(g, K) = e(g, T)"™) (24)
=e(g"™, T) (25)
=e(F,T). (26)

Thus KV outputs 1.

Next, we prove necessity. Given 7" € G and T is not the
identity element, it is easy to verify 7' is a generator of the
group since the group size p is a prime.> Let K = T% where
T € Z;. If KV outputs 1, Eq. (16) holds, thus we have

e =e(g,K)/e(F,T) 27
= e(g, )" "Mm), (28)
Since x, h(m) € Zj, we know x — h(m) = 0, and
K =T1"Mm), (29)
O

D. Security analysis

MLEvd achieves the semantic security when messages
are unpredictable, i.e. have high min-entropy. Specifically,
following the definition of PRV-CDA-security and the One-
time Real-or-Random security defined in [8], we can prove

Theorem 3. The MLEvd is PRV-CDA-secure in the random
oracle model assuming the symmetric encryption scheme SDE
satisfies one-time real-or-random security and CDH assump-
tion holds on G.

The above theorem can be proved by using a hybrid
argument and replacing the outputs of hash functions as well
as the symmetric encryptions with random bits similarly as the
proof of PRV$-CDA security in [8] does. The detailed proof
is too lengthy to be included here. We leave it to the extended
version.

VI. DTEP: A FULLY SECURE RE PROTOCOL THWARTING
POISONING ATTACKS

In this section, we present our complete RE protocol DTEp.
The DTEp shares similar procedures with DTEs, but uses
MLEvd as its encryption scheme and has additional verifi-
cation steps to deal with poisoning attacks.

A. Protocol Details

1) Chunking: DTEp’s chunking is the same as DTEs’.
2) Key and fingerprint generation: To support efficient
look-up operations, DTE-p uses a fixed fingerprint F;:

Fy = g"tmo), (30)

For encryption/decryption key, David needs to be able to
verify whether K;(t) and F; match. But he cannot know how
to compute K;(t) from F;. Otherwise, David can compute the

key by itself and decrypt all ciphertexts. Thus, we let
Ki(t) = ghtmot, 31)

3In practice, we require the agent rejects 7T that is not a valid group member
or is the identity element.



3) Deduplication: DTEp’s deduplication is the same as
DTEs’. For each chuck, Alice checks whether it can be
deduplicated by looking up its corresponding fingerprint in a
fingerprint table 77, stored in her local cache. Alice generates
a deduplicated message M’ = {m/,m}, ..., m! } as follows.

m, = {mi
B )

4) End-to-end secure transmission: DTEp’s end-to-end se-
cure transmission is the same as DTEs’.

5) Message recovery: DTEp’s message recovery is similar
to DTEs’. The only difference is Bob now needs to compute
the fingerprint and secret key for each deduplicated chunk.
Based on received h(m;), Bob first recovers the fingerprint F;
following Eq. (30). Then Bob sends F; to David, and requests
its corresponding ciphertext C;(t).

Note that to support dynamic keys, DTEp’s ciphertext
includes an additional nonce part as

if F; ¢ Tra;

32
otherwise. (32)

Ci(t) = (¢ (1), T), (33)
where
¢i = ENC(m;, K;(t)) (34)
T=g" (35)
After receiving C;(t), Bob computes the secret key K;(t)
as:
Ki(t) = (T)"™, (36)
and decrypts ¢;(t) with it
m; = DEC(c;(t), Ki(t)). (37)

Finally, to assure the recovered message is correct, Bob can
compute the fingerprint of the recovered message and compare
it with the fingerprint that he received from Alice. If the two
are the same, the message is correct. Otherwise, the recovery
is false, and Bob requests Alice to send the correct message
without performing deduplications.

6) Synchronizations: DTEp’s synchronization is the same
as DTEs’.

7) Poisoned ciphertext verification and correction: If Bob
sees a poisoned ciphertext C;(t), he submits < F;, K;(t) >
to David.

David verifies if the following equation holds

e(F;,T) = e(g, K;(t)). (38)

If it holds, David agrees that K;(t) is the correct key. David
continues to verify the correctness of ¢; same as Bob does.

B. Correctness

Theorem 4. DTEp’s verification is correct in the sense that
the deduplication agent always agrees when a honest user
finds a poisoned ciphertext and reports it.

Proof. Suppose a poisoned attack does happen and is reported
by a honest user, the agent would receive the correct K;(t)
corresponding to F; and T

K;(t) = Thtmo) (39)
= ghtmt (40)
Due to the bilinearity, we have
e(g, Ki(t)) = e(g, )" )" (41)
=e(g"™), g") (42)
= e(F;,T). (43)

Therefore, equation (38) holds and the agent agrees K;(t)
submitted by the user is correct. After applying K;(t) for
decryption on the poisoned ciphertext, agent would get a
message m; that is different from m;. Due to the collision-
resistance of H, we know H (m/) # F;. Thus, the agent would
agree C/(t) is poisoned. O

C. Security analysis

Theorem S. DTEp is secure against the agent in the sense
that the agent cannot differentiate deduplicated messages of
equal lengths assuming they are unpredictable, i.e. have high
mini-entropy and the MLEvd is secure.

Proof. We prove this in the random oracle model by examin-
ing what the deduplication agent sees in DETp.

For each deduplicated message m;, if the ciphertext is
correct, the agent would receive its fingerprint F; and ci-
phertext C;(¢), which are included in the adversary’s view in
MLEvd’s security game. Since MLEvd is secure, the agent
cannot differentiate deduplicated messages when they are
unpredictable. The theorem holds.

Now consider a ciphertext is poisoned and a honest user
reports it, the agent would receive its fingerprint F}, its correct
encryption key K;(¢) and the nonce g*. In addition, the agent
may receive a new valid ciphertext C;(t') corresponding to
a new nonce t’. However, knowing an extra, valid random
(K;(t), g") pair does not give adversary any extra advantage
(since the adversary can generate the pair by itself), therefore
the theorem still holds. O

VII. EXPERIMENTAL EVALUATIONS

In this section, we implement our protocol and perform ex-
periments with real-world data to demonstrate the performance
and efficiency of the MLEvd scheme and the DTEp protocol.

A. Environments and datasets

All experiments are performed on a computer with the
Intel(R) Xeon(R) Gold 5122 CPU, 128 GB memory running
the Ubuntu OS. We implement the MLEvd scheme and
DTEp protocol using the Crypto++ Library [21], the PBC
(Pairing-Based Cryptography) Library [22] and the The GNU
Multiple Precision Arithmetic (GMP) Library [23] with C++
language. In MLEvd, we use ChaCha stream cipher [24] as
the underlying deterministic encryption scheme, and SHA256
as the underlying cryptographic hash function. The pairing



algorithm we use is randomly generated by the PBC Library
according to the security parameter. We use the Rabin CDC
algorithm for the chunking scheme.

We use the Web-site hosts traces and snapshots collected by
the File systems and Storage Lab and its collaborators [25],
[26]. We transmit files derived from the homes snapshots in
2015 between the senders and receivers through the servers
in our experiments and collect the experimental results during
the transmissions. The results are shown in the following.

For simplicity, we implement our protocols in the applica-
tion layer. In practice, one can implement our protocols in
lower layers such as transport layer or network layer which
should be able to further increase the transmission efficiency.

B. Results on bandwidth saving

We evaluate the bandwidth savings by comparing the actual
size of messages transmitted between the sender and the
receiver to the original size of messages, i.e.

actual size of messages

bandwidth saving =1 — —— - .
original size of messages

1) Using different chunking sizes: Figure 2 shows DTEp’s
bandwidth saving under different chunking sizes. We record
the DTEp’s performance while the sender and the receiver
constantly transmitting 3 random files in 7 consecutive pe-
riods. The chunking sizes are the average bit length of the
chunks. The experiments are conducted with 256 bits security
parameter and 32 CPU cores. The size of all caches of senders,
receiver and servers are set as 128 MB, and we totally transmit
messages of size about 2 GB. The cache replacement policy
is set to FIFO. The experimental results show that with larger
average chunking size, the bandwidth savings are evidently
improved. This is mainly because when deduplication happens,
the chunk contents will replaced by its hash in the message.
So larger chunks can bring more savings when deduplications
happen. When using 8KB/16KB chunks, DTEp can save up
to 60-70% bandwidth.

Bandwidth Savings (%)
~.

Time Period

Fig. 2. Bandwidth Savings with Different Chunking Sizes

2) Using different cache sizes and replacement policies: We
test three commonly-used kinds of cache replacement policies
namely the “first in first out (FIFO)” policy, the “least recently
used (LRU)” policy and the “least frequently used (LFU)”

policy, with cache sizes ranging from 4 MB to 128 MB.
The bandwidth savings are shown in Figure 3. We can see
that when the cache size is small, the bandwidth savings are
not large, increasing the size could result greater bandwidth
savings. On the other hand, when the cache capacity is
sufficiently large, further increasing cache is not very helpful.
In addition, we see different cache replacement policies do not
obviously affect the bandwidth savings on our datasets.

—— FIFO
~®- LRU
- LFU

Cache size: 64 MB Cache size: 128 MB

Time Period
Cache size: 256 MB

Bandwidth Savings (%)
s
&

Bandwidth Savings (%)
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&

Time Period
Cache size: 512 MB

Bandwidth Savings (%)
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8

Bandwidth Savings (%)
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&

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Time Period Time Period

Fig. 3. Bandwidth Savings with Different cache Settings

C. Results on efficiency

Then we conduct the following experiments aiming to
show that the overheads brought by the DTEp protocol is
lightweight. In these experiments, we evaluate the processing
throughput, i.e. how much data can be processed per second
by the sender and receiver, under different parameters. We
also record the throughput needed for the sender of messages
to update the cache of the server. The experimental data
presented here is collected synchronously with the bandwidth
savings shown above. So the experimental results also shows
the correlation of the bandwidth savings and the processing
throughput.

1) Using different security parameters: In Figure 4, we
show the processing throughput under different security pa-
rameters for the MLEvd scheme. The experimental results
meet the expectation that with the throughput will decrease
with greater security parameter, because more computation
resource will be consumed by the cryptographic operations.
Our protocol can achieve roughly 200 Mbps throughput at
both the sender’s and the receiver’s sides which is practical
for WAN transmissions.

2) Using different cache sizes and replacement policies: In
Figure 5 and Figure 6, we show how the cache replacement
policy and the cache size affect the processing throughput.
The cache replacement policy do not have much effect on
the processing throughput. But larger cache size will im-
prove the cache updating throughput but slower the receiving
throughput. This is because that larger cache size causes more
redundancy elimination, so the cache no longer needs too
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construct a highly efficient, secure RE protocol. Experimen-

3) Using different chunking sizes and amounts of threads: tal results show our protocol can achieve up to 60%-70%

We also show the effect of different average chunking sizes in  bandwidth savings and around 200 Mbps throughput using

Figure 7. Different chunking sizes mainly affect the updating a preliminary application-layer implementation. Our future

throughput. The reason for this is that smaller chunking size work include implementation optimizations of the MLEvd and
means more chunks and this leads to more cache updating. We DTEp, and real-world WAN tests.
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